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A Methodology for Constructing Fuzzy Algorithms
for Learning Vector Quantization

Nicolaos B. KarayiannisMember, IEEE

Abstract—This paper presents a general methodology for the node in the input layer is connected directly to the cells, or
development of fuzzy algorithms for learning vector quantization nodes, in the output layer. A prototype vector is associated
(FALVQ). The design of specific FALVQ algorithms according to itk aach cell in the output layer as shown in Fig. 1.

existing approaches reduces to the selection of the membership Koh 18 d ised | . h
function assigned to the weight vectors of an LVQ competitive ohonen [18] proposed an unsupervised learning scheme,

neural network, which represent the prototypes. According to the known as the (unlabeled data) LVQ. This algorithm can be
methodology proposed in this paper, the development of a broad used to generate crisppartitions of unlabeled data vectors.

variety of FALVQ algorithms can be accomplished by selecting pg| et al. [20] identified a close relationship between this

the form of the interference function that determines the effect of . . .
the nonwinning prototypes on the attraction between the winning algorithm and a clustering procedure proposed earlier by

prototype and the input of the network. The proposed method- MacQueen, known as the sequential hamheans algorithm.
ology provides the basis for extending the existing FALVQ 1, It must be emphasized here that the LVQ 1, LVQ 2, and
FALVQ 2, and FALVQ 3 families of algorithms. This paper LVQ 3 algorithms proposed by Kohonen [17], [19] for fine
a}lso introduces two quantitati\{e measures which establish a rela- tuning theself-organizing feature magSOFM) are supervised
tionship between the formulation that led to FALVQ algorithms . S . .
and the competition between the prototypes during the learning " the sense 'Fhat their implementation requires Igbelgd feature
process. The propoged a|gorithms and Competition measures areVeCtorS, that IS, feature vectors Whose C|aSSIflcatI0n IS already
tested and evaluated using the IRIS data set. The significance known.
of the proposed competition measures in practical applications  Huntsberger and Ajjimarangsee [7] attempted to estab-
is illustrated by using various FALVQ algorithms to perform jish 4 connection between feature maps and fuzzy clustering
segmentation of magnetic resonance images of the brain. e :

by modifying the learning rule proposed by Kohonen for

Index Terms— Competition measure, competitive learning, the SOFM. However, the resulting hybrid learning scheme
competitive — learning vector quantization (LVQ) nemwork, ,01aq theoretical foundations, formal derivations and clear
construction methodology, interference function, membership L -
function, vector quantization, update equation. objectives. Bezdelet al. [3], [21] proposed abatch learning

scheme, known afuizzy learning vector quantizatidrLVQ).
Karayianniset al. [10], [16] presented a formal derivation of
. INTRODUCTION batch FLVQ algorithms, which were originally introduced on
HE objective ofvector quantization(VQ) is the repre- the basis of intuitive arguments. This derivation was based on
sentation of a set of feature vectokgs ¢ X C IR™ the minimization of a functional defined as the average gener-
by a set of prototyped’ = {vi,vs,---,v.} C IR". Thus, alized distance between the feature vectors and the prototypes.
vector quantization can also be seen as a mapping from anThis minimization problem is actually a reformulation of the
dimensional Euclidean space into the finite ¥et IR", also problem of determining fuzzy-partitions that was solved by
referred to as the codebook. fuzzy c-means algorithms [2], [6].

Codebook design can be performed by clustering algo-Pal et al. [20] suggested that LVQ can be performed
rithms, which are typically developed by solving a constrainafirough an unsupervised learning process using a competitive
minimization problem using alternating optimization. Theseeural network whose weight vectors represent the prototypes.
clustering techniques include the criggmeans [4], fuzzy According to their formulation, LVQ can be achieved by min-
c-means [2], and generalized fuzzymeans algorithms [8], imizing a loss function which measures the locally weighted
[9]. error of the input vector with respect to the winning prototype,

Recent developments in neural network architectures t@at is, the prototype that is closest to the input vector in
sulted inlearning vector quantizatiofLVQ) algorithms. LVQ  the Euclidean distance sense. This formulation resulted in the
is the name used for unsupervised learning algorithms @gneralized learning vector quantizatiqGLVQ) algorithm
sociated with the competitive network shown in Fig. 1. ThR0] and the GLVQ-F algorithms [11].
network consists of an input layer and an output layer. EachKarayiannis and Pai [12]-[15] proposed a framework for

the development diuzzy algorithms for learning vector quan-
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Fig. 1. The LVQ competitive network.

LVQ network, which represent the prototypes. The distancésquently based on the minimization of the functional [20]
between each input vector and the prototypes are weighted by

a set of membership functions, which regulate the competition Lvp,r=1,2,--+,0) =

between various prototypes for each input and, thus, determine g 9

the strength of attraction between each input and the prototypes / / o /]R N z_:l up|[x = v ||* f(x) dx (1)
during the learning process. The design of specific FALVQ !

algorithms reduces to the selection of membership functiowdich represents the expectation of the loss functign=

that satisfy certain properties [13], [15]. Ly(vy,r =1,2,---,¢), defined as

This paper is organized as follows: Section Il presents ¢
a review of the formulation that led to the development 1 =1 (v, r=1,2,--- ¢ :ZWHX—WHQ- 2)
of a broad variety of FALVQ algorithms. Section IIl pro- -1

poses a new methodology for constructing FALVQ algorithms. h finiti ] . ¢
Section IV presents the application of the proposed method§]-n€ above definitionsy, = u,(x),” = 1,2,-.-,¢,isaseto
ogy in the development of the extended FALVQ 1, FALVQ omembership functions which regulate the competition between

and FALVQ 3 families of algorithms, respectively. Section \{‘;he profto:\ypesa,,gz 1h’.2’];' 6 for tge INputx. Tr;]e specifich ¢
introduces two competition measures that can be used Qgm of the membership functions determines the strength o

control the competition between the winning and nonwinnin%m"’“?tion between each input and the prototypes during the
prototypes during the learning process. Section VI presentsI ﬁrr]nmg procesi [121_[1_5]' The loss functlon_ IS °|‘;te.” dﬁfmed
experimental evaluation of the extended FALVQ algorithm\‘é’It respect to the winning prototype. Assuming thgis the

and the proposed competition measures. Section VII contafffining prototype corresponding to the input vectorthat is,
concluding remarks. the closest prototype tr in the Euclidean distance sense, the

membershipy,.,r = 1,2,---, ¢, can be of the form

I E 1 if r=14

. Fuzzy ALGORITHMS FOR Up = Ujp = Ix=vil2Y . (3)
LEARNING VECTOR QUANTIZATION “(le—vrllz) ifr .

Consider the sett’ of samples from amn-dimensional In such a case, the loss function measures the locally weighted
Euclidean space and lgt(x) be the probability distribution error of each input vector with respect to the winning prototype
function of x € A ¢ IR"™. Learning vector quantization is[20].
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The minimization of (1) using gradient descent is a difficult) 0 < p(z) < 1, ¥V z € (0,1); 2) p(z) approaches one
task, since the winning prototype involved in the definitioas » approaches zero; 3)(z) is a monotonically decreasing
of the loss functionLy is determined with respect to thefunction in the interval0, 1); and 4)p(z) attains its minimum
corresponding input vectat € &X. Following Tsypkin [22], value atz = 1.

Palet al. suggested the use of the gradient of the instantaneou#\ variety of fuzzy algorithms for learning vector quantiza-
loss function (2) when the probability distribution functiortion can be derived by minimizing the loss function (4) using
f(-) is not known [20]. This approach implies tisequential gradient descent. i is the input vector, the winning prototype

update of the prototypes with respect to the input vectoys can be updated by [13], [15]

x € X and is frequently used in the development of learning

algorithms [17], [22]. °

The development of fuzzy algorithms for learning vector Avi =1(x = Vi) (1 + Zw“> (6)
guantization requires the selection of the membership func- et
tions assigned to the prototypes [12]-[15]. A fair competitio%he
among the prototypes is guaranteed if the membership function
assigned to each prototype: 1) is invariant under uniform w(z) = p(z) + 2p'(z) =/ (2). (7)
scaling of the entire data set; 2) is equal to one if the prototype
is the winner; 3) takes values between one and zero if th@ch nonwinning prototype; # v; can be updated by [13],
prototype is not a winner; and 4) approaches zero if tH5]
prototype is not a winner and its distance from the input vector
approaches infinity. Avj =1 (x = V) ni (8)

The relationship between the form of the membershj
function and the competition between the prototypes during the
learning process can be quantified by focusing on the relative n(z) = =22 p'(2) = u(z) — 2/ (2). (9)
contribution of the nonwinning prototypes to the loss function
(2). If the membership is given in (3), the loss function (2Jhe update of the prototypes during the learning process
can be written as depends on the learning rate € [0,1], which is a mono-

. . tonically decreasing function of the number of iteratians
L, = Zuz‘TIIX—VrIIQ - ||X—Vi||2+zuz‘TIIX—VTIIQ- (4) The learning rate can be a linear function mfdefined as
1 vy n=mn(v) =no(l —v/N), wheren is its initial value andV
the total number of iterations predetermined for the learning
Assuming thatv; is the winning prototype, each nonwinningprocess_
prototypev,. # v; contributes to the loss functiaby through  According to (6), the update of the winning prototypgis
the termu;,.||x — v,.||?. Thus, therelative contributionof the affected by all the nonwinning prototypes # v;, while w;,.
nonwinning prototypev,. with respect to the winning prototyperepresents thinterferencefrom the nonwinning prototype..
v; can be measured by the ratio, |x — v.||*/||x — Vi[> to the update of the winning prototype. In fact, the term

The search for admissible membership functions can e« ., represents the cumulative effect of the nonwinning

facilitated by requiring thatu;.|[x — v.[|?/|lx — vi||* is @ prototypes on the attraction of the winning prototype by the

rew;, = w(||x — v;||*/|lx = v.||?), with

erens; = n(lx — vil2/llx — v;|2), with

function of the ratiol|x — v;||*/||x — v.||%, that is, input vectorx. In contrast, (8) indicates that the update of each
9 9 nonwinning prototyper; # v; is affected only by the winning
b= vl ( lx—vil ] e hnterference
i == S ). (5) prototypev;. In this casen;; represents thinterferencefrom
[[x = vl l[x = v, |

the winning prototypev; to the update of the nonwinning

The obvious advantage of this choice is that the propertiesR§Ptotypev;. = _ _

p(-) relate directly to the relative contribution of the prototype The selection of specific membership functions can be

v, to the loss functionLy. Sincew;, = u(||x — v;|?/|x — facilitated by examining the relationship betwegn the form of

v..||?), ¥r # i, the corresponding function(-) is of the form p(-) and the competition among the prototypes in the extreme

w(z) = zp(z). In the trivial case where(z) = 0,Vz € Cases yvher@(:) equals its lower and upper bounds specified

(0,1), the membership function (3) corresponds to the nearddtthe inequality) < p(z) <1, Vz € (0,1). If p(z) =0, Vz €

prototype condition, which results in Kohonen’s (unlabeled; 1), thenw;, =0, Vr # i andn;; = 0, Vj # i. In this case,

data) LVQ algorithm. In this case, the nonwinning prototypd§e winning prototypev; is updated according to

are not attracted by the input and have no effect on the Av; = n(x = vi) (10)

attraction of the winning prototype by the inpxit =0 ¢
If u(z) = zp(z), the consistency of the correspondingyhile the nonwinning prototypes; # v; remain unchanged.

membership function with the admissibility _condltlon_s Prelf p(z) = 1, Vz € (0,1), thenu(z) = 2, ¥z € (0,1). Since

ser_lted_ above can be gqaranteed by selecting funcp(n)_s p(2) =0, Vz € (0,1), (7) indicates thatv;, = 1, Vr # ¢ and

satisfying ce_rtaln proper_t|e§ _[13], [15]_._Among the functlon%:i# w;; = ¢ — 1. According to (6), the winning prototype

p(z) that satisfy t.he adm|SS|b|I|ty qondlfuons, the devellopme " is updated by

of FALVQ algorithms is based in this paper on differen-

tiable functionsp(-) which satisfy the following conditions: Av; =ne(x —v;). (11)
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TABLE | o' (x). If u(-) is of the formu(z) = xp(z), then
MEMBERSHIP FUNCTIONS AND INTERFERENCEFUNCTIONS FOR THE
FaLvQ 1, FALVQ 2, AND FALVQ 3 FAMILIES OF ALGORITHMS w(:L') ( ) ( ) ( ) 12)
FALVQ Family u(z) w(r) n(z) : : .
FALVQl (l<a<o) z(l4+az)™ (1+az)? az?(l+az)? Accordlng to the properties qf( ),
FALVQ2 (0 < 8 <oo) zexp(—fBz) (1—Bz)exp(~fz) Bzlexp(—fBz) lim w(a:) = lim p(.’L’) =1. (13)
FALVQ3 (0<vy<1) z(l—~vz) 1-29z ya? z—0 z—0

Since p(-) is a monotonically decreasing function in the

)
interval (0,1), p’(z) < 0,Vz € (0,1) and alsozp’(z) <
Under the same assumption;; = 0,Vj # < Thus, the 0,Vz € (0,1). Sincep(z ) <1,Vz € (0,1)

nonwinning prototypes; # v; are not updated with respect

to the inputx regardless of their distance from the winning w(z) = ple) +xp'(x) <1,Vz € (0,1). (14)

prototype v;. . N .
The above formulation provided the basis for the develo?.'nce w(z) = v'(z), the last admissibility condition for the

ment of the FALVQ 1, FALVQ 2, and FALVQ 3 families of nterference functiom(-) can be established by observing that

algorithms [13], [15]. Table | shows the membership functions 1

that generated these families of algorithms and the correspond- /0 w(z) dr = u(1) — u(0). (15)

ing interference functions. Ik is the input vector, then the o . . .

winning prototype is updated by (6) withy;, evaluated in An admissible membership function(-) must satisfy the

terms of the interference functiom(-) shown in Table | as conditionsu(0) = 0 andu(1) = p(1) = 0. Thus,

wir = w(||x = v;i||?/||x = v,:||*). The nonwinning prototypes 1
v; # v; can be updated by (8) with;; evaluated in terms / (z)dz >0 (16)
of the interference functiom(-) shown in Table | as;; = 0
n(lx = vil|?/llx = v;|?). In summary, an integrable functiom(:) is an admissible
The algorithms described above can be summarized iagerference function if it satisfies the following conditions:
follows. 1) w(x) approaches one as approaches zero; 2)(z) <
1) Selecte; fix 19, N; setr = 0; randomly generate an1, Vz € (0, 1); and 3)]0 x) dx > 0. It must be emphasized
initial codebookVy = {vi9,v20---,Veo} here thatw(-) is not necessarlly a monotonically decreasing
2) Calculaten = no(1 — v/N). function in the interval(0, 1).
3) Setv = v + 1. Given an interference functionu(-), the corresponding
4) For each input vectok: membership function:(-) can be calculated as
« find ¢ such that|x — vi,_i|> < [x - w(z) = /w(x) dr + C. (17)
Viwv-1l? Vi # i
* caleulate wi, = u(lx — vi,—1]?/lx = The constantC' can be determined by requiring thatz)
Viu—t1|?), V7 # i approaches zero asapproaches zero, that is,
« calculate wi, = w(|x — vi,—1]?/llx -
Ve 1|]2), Y # i lim u(x) = 0. (18)
o calculaten;., = wuir, — (|x = vip—1]|?/llIx - _ _ _ ,
Vet ||2) Wir, Y7 # i The interference function = n(z) can be obtained in terms
«  updatev; by Vi, = Vi1 +7(x = viy_1)(1+ of w(z) andu(z) asn(z) = u(z) — zw(z).
2y Wiy )-
R updatev; # v; by v, = vj,_1 + nix — IV. NEw FALVQ ALGORITHMS
Vjp—1) Niju- The construction methodology presented above allows the

designer to have a more direct impact on the competition
between the prototypes during the learning process. This
methodology is used in this section for extending the existing
[Il. CONSTRUCTING FALVQ ALGORITHMS FALVQ 1, FALVQ 2, and FALVQ 3 families of algorithms,
BASED ON THE INTERFERENCEFUNCTION which are summarized in Table | [13], [15].

The development of FALVQ algorithms was based on the
selection of membership functions that satisfy certain propdr: EXtending the FALVQ 1 Family of Algorithms
ties [12]-[15]. Given a membership function, the competition The FALVQ 1 family of algorithms can be extended by
of the prototypes during the learning process is determinsdlecting an interference function of the form
by the form of the corresponding interference functias(s) 1
and n(-). Thus, the development of FALVQ algorithms with w(z) = AT an)y
desired behavior can be facilitated by directly selecting the
interference functions instead of the membership functiowhere @ > 0 andn > 1. The interference functionu(-)
This can be accomplished easily in this case, sin¢e) = defined in (19) decreases monotonically from its maximum

5) If v < N, then go to Step 2).

(19)
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valuew(0) = 1 to w(1) = (14 )=+, For a fixedn, w(1) The interference function (25) decreases from its maximum
approaches one as decreases to zero. Moreover(l) valuew(0) =1to w(l)=(1- %)6_5. Neverthelessy(-)
decreases and approaches zero @iscreases and approachess not necessarily a monotonically decreasing function in the
infinity. If the value of« is fixed, the value ofv(1) decreases interval (0, 1), as indicated by the proposition which follows.
asn increases. Proposition 1: The interference functions(-) defined in
According to the proposed algorithm construction metho{25) is monotonically decreasing in the interyal 1) if

the membership function corresponding #g-) can be ob-

tained as B <n. (28)
(z) = (2)dz = dz The corresponding membership function (26) is monotonically
u\e) = wr)ar = (14 az)r+t increasing in the interval0, 1) if 3 < (n!)w.
1 Proof: The proof of this proposition is presented in

~ Tha(l+az)n +C. (200 Appendix A.

The constantC' can be evaluated using the condition (18)0 Extending the FALVQ 3 Family of Algorithms

which results inC = —%. Thus, the membership function ) )
corresponding to (19) is The FALVQ 3 family of algorithms can be extended us-
) ) ing the proposed construction method and some well-known
- (1= ' 21) integrals. Forn > 1 and~y € (0,1),
n—1 _ n
According to the binomial identity, /[1 = (n+1)yz](1l —72)" " de = (1 —y2)".  (29)
(I+ax)" =1+n(az)+ -+ (az)". (22) According to (29), the selection of an interference function of
the form
Thus, it can be verified that the membership function defined
in (21) is of the formu(z) = = p(x). Forw(-) defined in (19), w(z) = [1 = (n+ 1)ya](l - yz)" ! (30)

the interference function(-) for the nonwinning prototypes is . . .
) gp yp results in membership functions of the form

n(z) = u(z) — zw(z) w(zx) = (1 — ~va)". (31)

1 1 T
~ na <1 (14 aa:)") (14 az)tt @3 The corresponding interference functieq) is given by

The original FALVQ 1 family of algorithms can be obtained n(z) = u(z) — rw(z) = nyz?(1 —yz)" . (32)

from the interference functiow(-) defined in (19) withn = 1. ] ] .
The family of FALVQ 3 algorithms can be interpreted as

B. Extending the FALVQ 2 Family of Algorithms the special case of the above formulation which corresponds

) ) ton = 1. Forn = 1, w(z) is a linear and monotonically
The proposed algorithm construction method can be US&cheasing function of: over the interval(0,1). If n >

for extending the FALVQ 2 family of algorithms. This can beL w(z) is a nonlinear function of;. Moreover,w(z) is not

accomplished by using the integral guaranteed to be a monotonically decreasing functianafer
1 5 e I (Ba)k the interval(0,1). The proposition which follows determines
ﬁ/(”!— (Bz)")e™ " dr = 3 > X (24) the combinations ofy and n which lead to interference
' k=1 functions w(z) that are monotonically decreasing over the
where > 0 andn > 1. This latter identity indicates that by interval (0, 1).

selecting an interference function of the form Prc_)position 2:_The interfere.nce_ functi_or’w(-) defi.ned in
1 (30) is monotonically decreasing in the interyal 1) if
w(z) = =(n! — (Bz)")e™P* (25)
(2) = S (nl = (B2)") et @)
the corresponding membership function becomes n
4 N The corresponding membership function (31) is monotonically
u(z) = & " o (Br) ' (26) increasing in the interva(0, 1) if v < #1 _ _
o= K Proof: The proof of this proposition is presented in
. . S Appendix B.
The resulting membership function is of the foralr) = The extended FALVQ 1, FALVQ 2, and FALVQ 3 families

xp(x). Moreover,u(x) attains the value of zero as ap- of algorithms can easily be implemented according to the

proaches_ zero. The interference functiaf) can be obtained gcpheme presented in Section II. ¥ is the input vector,

by combining (25) and (26) as the winning prototypev; can be updated by (6) withu;,

27) evaluated in terms of the interference functioft) asw;, =
w(||x—=v;||?/|[x=v.||?). The nonwinning prototypes; # v;

If n = 1, the interference functiow(-) defined in (25) leads can be updated by (8) with;; evaluated in terms of the

to the original FALVQ 2 family of algorithms. interference functiom(-) asn;; = n(|jx — v;||?/|lx — v;||?).
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V. COMPETITION MEASURES 0.5

-

This section establishes a direct relationship between the
properties of the membership functions used and the perfor-
mance of the resulting FALVQ algorithms. This is accom-

<

N
o
A~~~

Q
=

[ L T 1
DL —

0.3

plished by introducing two competition measures, which relate A, )
the form of the membership functions with the competition 0.2
between the winning and nonwinning prototypes during the
learning process. 0.1
According to Section Il, the nonwinning prototypes are not
updated to match the input vectorifiz) = = or uw(z) = 0
0,Vz € (0,1). It can be observed that .
1 1 — @
0 =V 0.5 T T T T T T T T T
For any other membership function selected according to the 0.4 " z; ]
conditions presented in Section Il n=3 —
1 1 0.3 n=d -
0< / w(z)dr < 3 (35) Au(n, )
0 0.2 .
Thus, the aread,, = j; u(z)dx can be used as a measure 0.1 -
of the competition between the winning and nonwinning
prototypes. The development of competitive LVQ algorithms 0 —=r=
2 4 6 8 10 12 14 16 18 20

requires that4,, € (0, %). Moreover, the nonwinning proto-
types become less competitive Ag approache$ or % This

measure can be used to evaluate the membership functions that ®)
resulted in the extended FALVQ 1, FALVQ 2, and FALVQ 3 0.5 . .
families of algorithms by investigating the effect of the param- n=1—
eters involved in their definition on the competition between 0.4 n=2 =
the winning and nonwinning prototypes during the learning Zij T
process. 0.3
The extended FALVQ 1 family of algorithms is generated “u(77)
by membership functions of the form (21).#f= 1, then 02
L zdx 1 0.1

A= [ - S-mita). @ 0 T

It can be verified that, (1, «) approache% as« approaches 0 02 04 v 0.6 08 :

zero. If « approaches infinity, themd,(1,«) approaches
zero. This is a clear indication that the competition between , ) )
2. (a) Au(n,a) as a function ofa for different values ofrn; (b)

inni inni ; - Fig.
the Wlnnlng _a_nd nonwinning prototypes dF’”_”Q the Ieammgu(n,,/j) as a function ofg for different values ofn; (c) Au(n,v) as a
process diminishes as approaches zero or infinity.  # 1,  function of v for different values of.

(©

then

1 [t 1 The extended FALVQ 2 family of algorithms is generated

Au(n, ) = %/0 <1 - (1+ aw)n) by membership functions of the form (26). In this case
1 1 1 1 > (ﬁx)k
e — — . 7 _ - — Bz
— [1 pYP—y <1 (1—}-04)"—1)} (37) Auln, ) = /3/0 Z o C dz
k=1
Fig. 2(a) plots the measurd, (n,«) as a function of« for 1 & B k Bt
different values ofr. According to Fig. 2(a)A.(n, @) attains =3 Z 1—¢” Z ol (38)
k=1 =0

values very close to} for small values ofa regardless of

the value ofn. In this case, the nonwinning prototypes ar¢f n = 1, (38) gives
not updated to match the input vectors. Asincreases, the

value of A,(n,«) decreases very slowly to zero, the other Au(1,8) = /3_2(1 —(1 —l—/})e_'@). (39)
extreme value of this competition measure which indicates

that the nonwinning prototypes are not updated to match thiean be verified thati, (1, 3) approache% as/3 approaches
input vector. zero. If 5 approaches infinity, thed,,(1, /3) approaches zero.
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The FALVQ 2 algorithms corresponding to = 1 become with u(z) = z(1 + az)™! as

increasingly competitive a8 moves away from the extremes 1 N 9

zero and infinity. Fig. 2(b) plotsd,(n,3) as a function of Cu(l,a) = _<7 - —>, (43)

(8 for different values ofa. According to Fig. 2(b),A,(n, ) 2\a-ln(l+a) «a

decreases quickly to values close to zero for all values @ |f , approaches zero, thef, (1, ) approaches its maximum

the value ofj3 increases. Thus, the competition between tRgyjue, i.e. lim,_o C,(1,a) = % This is consistent with the

winning and nonwinning prototypes diminishes quickly as th@ct that if o approaches zero, them(z) = = (1 + az)™!

value of 3 exceeds a certain threshold. approaches:. It can also be verified thatm, ... C,,(1,a) =
The extended FALVQ 3 family of algorithms is generatec%, Fig. 3(a) plotsC, = C,(n,a) as a function ofa for

by membership functions of the form (31). In this case,  djfferent values ofr. As the value ofv increases from zero to

infinity, C,,(n, @) decreases asymptotically from its maximum

Au(n, ) value of 2 to 1, its lower bound. According to Fig. 3(a),

_ ! 1 ng Cy.(n, ) remains almost constant as increases from zero

_/0 (1 — yx)"do to infinity and is practically not affected by the value of
1 Thus, with the exemption of values of sufficiently close to

_ n+1
Tt D+ 202 [1-(@ =" (1 +y+ny)]. 40) zero, the areal, = A,(n, ) is a more reliable competition
measure for the extended FALVQ 1 family of algorithms.

If n = 1, then (40) gives The centroid of the membership function that resulted in
the FALVQ 2 family of algorithms can be obtained from (42)
Au(1,7) = é(:; —29). (41) with u(z) = zexp(—pFx) as
2 -8
Cu(l,/})—l2 (F*+28+2)e ' (44)

Clearly, 4,(1,) attains its maximum valug for v = 0,

B 1=(B+1e P
which corresponds to no competition, and decreases linearly . .
from % 1 If°5 approaches zero, thefi, (1, 3) approaches its maximum

to 5 asy spans the interval0,1). Fig. 2(c) plots =ee 5 "
Ay (n,~) as a function ofy € (0, 1] for different values of. value, i.e.lims—o Cu(1, 5) = 3. It can also be verified that
Forn = 1, A,(n,~) decreases linearly froto 1. However, limg—oo Cu(l, f) = 0. Fig. 3(b) plotsCy, = Cu(n, ) as a
Au(n,~) decreases much faster for higher values:ofThus, function of 3 for d|ﬁergr_1t values Ofn.' C_I_early, the centroid
even for values ofy close to zero, higher values afallow Cu(7: /) can take positive values significantly lower thgn
the nonwinning prototypes to be updated to match the inpflﬁ’tr Iarge value_s ofj. Such valu_e_s olu(n, ) indicate that
vector. there is pracuca!ly no competition b_etwegn th(_a prototypes
The areaA, alone may not be sufficient to establish éiurmg the learning process. In conjunction with the area
relationship between the form of the membership function artt = 4« (7,5), Cu(n, ) can be used to select the range

the competition between the winning and nonwinning prot@f values of 3 that guarantee the competition between the

types during the learning process. This can be accomplished§Ning and nonwinning prototypes. _
considering the ared.,, in conjunction with the “centroid” or he centroid o_f the membersh|p function t_hat resulted in
"center of gravity” of the membership functiar(-). Assuming th_e FALVQ 3 family of algorithms can be obtained from (42)
that A, = [, u(x)dz # 0, the centroid ofu(x) over the with u(z) = 2 (1 —~z) as

interval z € (0,1) is defined as _14-3y

T 23-2y

Cu(1,7) (45)

1
d
C, = M. (42) Clearly, C\,(1,7) decreases fron to i as the value ofy
fo u(z) dx increases from zero to one. Fig. 3(c) plats = C,,(n,~v) as

a function ofy € (0, 1] for different values ofn. In this case,

The centroid (42) is a useful source of informatiqn regarding competition measur€, (n, v) decreases slowly to values
the s_hape ok(-) and, thus_, the bias of the resulting I:'A‘I‘\/Qconsiderably higher than zero. Sin€g(n,~) takes values in
algorithm toward the winning prototype. In the extreme ca

% neighborhood of as~ spans the interval0, 1), Cu(n,~)

_ _ 2 : faal . ) ’ u )
whereu(z) = x, C, el If u(-) is an admissible membership;g |+ 4 particularly informative competition measure in this
function, therC, < 3. Since the selection af(x) = z implies cace Thys, the ared, = A.(n, ) can be used for selecting

that the nonwinning prototypes are not updated to matghl, \ayes ofy that result in competitive FALVQ 3 algorithms.
the input vector, the development of competitive FALVQ

algorithms requires a membership function that corresponds to
a centroid value lower thaé. Nevertheless, the nonwinning
prototypes become increasingly competitive as the cen€rgid )
decreases beloy. If the value ofC, is sufficiently close to A Clustering the IRIS Data
zero, the competition between the winning and nonwinning The proposed algorithms were tested using Anderson’s IRIS
prototypes diminishes. data set [1], which has extensively been used for evaluating
The centroid of the membership function that resulted e performance of pattern clustering algorithms. This data set
the FALVQ 1 family of algorithms can be obtained from (42fontains 150 feature vectors of dimension 4 which belong to

VI. EXPERIMENTAL RESULTS
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TABLE I
NUMBER OF FEATURE VECTORS FROM THEIRIS DATA SET
AsSIGNED TO AWRONG CLUSTER BY ALGORITHMS FROM THE
EXTENDED FALVQ 1 FamiLy witH N = 100 AND 59 = 0.5

—

0.8 - n

N

e

0.6 S « 001 0.00 01 03 05 07 1.0 2.0 50 100 100.0

Cu(n, ) T SRR e e s - n=1 100 99 16 16 16 16 16 16 16 16 17

0.4 B n=2 100 50 16 16 16 16 16 16 16 16 17

n=3 100 50 16 16 16 16 16 16 16 16 17

0.2 + B n=4 100 50 16 16 16 16 16 16 16 17 17

0 1 1 L 1 1 1 L | I
2 4 6 8 10 12 14 16 18 20
@ TABLE Il
(a) NUMBER OF FEATURE VECTORS FROM THEIRIS DATA SET

ASSIGNED TO AWRONG CLUSTER BY ALGORITHMS FROM THE
EXTENDED FALVQ 2 FamiLy witH N = 100 AND 59 = 0.5

g 001 001 01 03 05 07 1.0 20 3.0 50 10.0

= 100 99 16 16 16 16 16 16 16 16 16
n=2 100 99 16 16 16 16 16 16 38 39 27
n=3 100 99 16 16 16 16 16 16 15 55 37
100 99 16 16 16 16 17 17 100 100 35

0.8

2 s
o

-

L0 NS —

=

Cu(n, B)

TABLE IV
0 I I I i I | 1 1 1 NUMBER OF FEATURE VECTORS FROM THEIRIS DATA SET
9 4 6 8 10 12 14 16 18 20 ASSIGNED TO AWRONG CLUSTER BY ALGORITHMS FROM THE
3 EXTENDED FALVQ 3 FamiLy witH N = 100 AND 59 = 0.5
(b) 4y 001 001 01 02 03 04 05 06 07 08 09 1.0

100 99 16 16 16 16 16 16 16 16 16 16

! ' ' ' ’ n=2 100 50 16 16 16 16 100 16 60 46 16 16
os | eI n=3 100 16 16 16 16 16 16 16 16 16 16 16
n=3 — =4 100 16 16 16 16 16 16 16 16 16 16 16
n=4 -
0.6 -
Cul(n,7)
0.4+ . . . _ .
iterations wasV = 100 while the initial value of the learning
02 L 1 rate wasn, = 0.5. The prototypes were initialized with all
zero values. According to Table Il, the extended FALVQ 1
0 ! ! | | algorithms resulted in a large number of clustering errors
0 0.2 0.4 0.6 0.8 ! for very small values ofa. Note that when 100 or 50
7 clustering errors are observed, the algorithm assigns all feature
© vectors to one or two clusters, respectively. The number of

Fig. 3. (a) Cu(n, ) as a function ofa for different values ofn; (b) clustering errors increased slightly for values @f above
Cu(n. 5) as a function of; for different values ofi; (c) Cu(n.7) as @ ten. This experimental outcome is consistent with the fact
function of v for different values ofn. L

that the nonwinning prototypes are not updated to match

the input vector for very small or very large values @f
three physical classes representing different IRIS subspecidsvertheless, there is a very broad range of valuesy of
Each class contains 50 feature vectors. One of the thifee which the extended FALVQ 1 algorithms resulted in an
classes is well separated from the other two, which are retceptable number of clustering errors. The performance of
easily separable due to the overlapping of their vectors. Ttiee extended FALVQ 1 algorithms tested on this data set was
performance of the algorithms is evaluated by counting tht significantly affected by the value af This experimental
number of crisp clustering errors, i.e., the number of featuogitcome is consistent with the behavior of the competition
vectors that are assigned to a wrong physical cluster measuresi,(n,«)andC,(n, «) for different values otv and
terminal nearest prototype partitions of the data. UnsupervisedAccording to Table lll, the algorithms from the extended
clustering of the IRIS data typically results in 12—17 clusterinBALVQ 2 family resulted in a large number of clustering
errors [20]. errors for very small values gf. Moreover, the performance

Tables 1I-1V show the number of feature vectors from thef these algorithms deteriorated as the valugiahcreased

IRIS data set assigned to a wrong cluster by algorithms frambove two. In this case; had a rather significant effect on
the extended FALVQ 1, FALVQ 2, and FALVQ 3 families,the performance of the algorithms, especially for high values
respectively. In all these experiments the total number of 3. The performance of the algorithms from the extended
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FALVQ 2 family is consistent with the behavior of thetumor/edema or CSF boundary, where tissues have similar MR
corresponding competition measurads(n, 3) and C,(n,3). relaxation behavior [5].

Table IV indicates that the performance of the algorithms The segmentation of MR images is conventionally formu-
from the extended FALVQ 3 family deteriorated for valuetated as the problem of clustering a set of feature vectors.
of ~ sufficiently close to zero. Nevertheless, there was rgach feature vector contains as elements the T1, T2, and
significant change in the number of feature vectors assign®® parameters. A clustering procedure is used to assign
to a wrong cluster as approached one. The performance ahe feature vectors to a relatively small number of clusters,
these algorithms was affected by the valuevadnly for small each represented by a prototype. Following the clustering
values ofy. For example, in the case whese= 0.01 the process, the segmented image is obtained by representing each
algorithm resulted in an acceptable number of clustering errdesture vector by the corresponding prototype. As a result, the
for n = 2 andn = 3. This is consistent with the behavior ofsegmented image contains a number of intensity levels equal
the competition measurd, (n,v) for different values ofy to the number of clusters, which is smaller than the number of

and n. intensity levels in the original image. The utility of segmented
] . MR images in the medical diagnostic process depends on the
B. Segmentation of Magnetic Resonance Images combination of two often conflicting requirements, that is,

The clinical utility of magnetic resonancéMR) imaging the elimination of the redundant information present in the
rests on the contrasting image intensities obtained for differeariginal MR images and the preservation of the important
tissue types, both normal and abnormal. For a given MiRetails in the resulting segmented images. The discrimination
image pulse sequence, image intensities will depend on lobaftween redundant and useful information is based on the
values of the following relaxation parameters: the spin-lattiseumber of intensity levels present in the segmented images,
relaxation time (T1), the spin-spin relaxation time (T2), andr, equivalently, the number of clusters created during the
the spin density (SD). Conventional diagnosis based on MRstering process. The selection of a small number of clusters
imaging requires the simultaneous visual inspection of wan result in the loss of detail necessary for the diagnostic
to three or more different weighted MR images. Given therocess, while the selection of a large number of intensity
redundancy present in MR images, their interpretation is badedels can undermine the effectiveness of the segmentation
on intelligent abstraction. In this context, abstraction meapsocess by producing segmented images with a large volume
the ability to concentrate on some key details of the imagé redundant information.
such as unusually high intensity levels that may correspondFig. 4(a)—(c) shows the T1-weighted, T2-weighted, and spin
to abnormalities. density MR images of an individual with meningioma. Menin-

In the context of MR imaging, segmentation usually impliegiomas are the most common form of intracranial tumors.
the creation of a single image with much fewer intensitin this case, the tumor was located in the right frontal lobe
levels than the original images. The resulting segmented imageper-left quarter of the MR images) and appears bright on
is frequently artificially colored in order to facilitate thethe T2-weighted image and dark on the T1-weighted image.
diagnostic process. In some cases, the objective of the segniBme tumor appears very bright and isolated from surrounding
tation process is the characterization of brain tissue reflectigbue in Fig. 4(d), which shows the T1l-weighted MR image
in different positions of the MR images. The existence g&corded after the patient was given Gadolinium. There is also
reliable computer-based MR image segmentation techniquekirge amount of edema surrounding the tumor, which appears
can enhance the ability of radiologists to detect, diagnosery bright on the T2-weighted image shown in Fig. 4(b).
and monitor diseased pathology. MR image segmentationThe MR image shown in Fig. 4 was segmented using
techniques are often evaluated in terms of their ability the (unlabeled data) LVQ algorithm and algorithms from
1) differentiate between cerebro-spinal fluid (CSF), whitdhe FALVQ 1, FALVQ 2, and FALVQ 3 families. In these
matter, and gray matter, and 2) differentiate between normedperiments, the feature vectors were formed using the pixel
tissues and abnormalities. Another important criterion foalues of the T1-weighted, T2-weighted, and spin density
evaluating MR image segmentation techniques is their abilitpages shown in Fig. 4(a)—(c), respectively. Fig. 4(d), which
to quantitatively measure changes in brain tissue volum#&lsows the T1-weighted image with Gadolinium, was used
caused by degenerative brain diseases. to evaluate the segmented images since the tumor appears

The use of fuzzy clustering procedures in MR image segery bright and is well separated from surrounding tissue.
mentation is justified by the fact that there are no hald all these experiments; = 8§, that is, the segmented
boundaries in MR images of the brain due to tissue mixing [Smages contained 8 different intensity levels which were
Hall et al. [5] compared MR image segmentation techniquestificially colored. Fig. 5(a) and (b) shows the segmented
based on supervised multilayered neural networks [17], threages produced by the LVQ algorithm applied with= 100
fuzzy c-means algorithm [2], and approximations of the fuzzgnd initial values of the learning ratg = 0.1 andng = 0.9,
c-means algorithm that were developed to reduce its comespectively. It was found that the algorithm achieves its best
putational requirements. Although the supervised training pérformance for initial values of the learning rate in this
multilayered neural networks was computationally demandingnge. Clearly, the LVQ algorithm succeeds in identifying the
supervised and unsupervised segmentation techniques mmema but fails to separate the tumor from surrounding tissue.
vided broadly similar results. Inconsistency of rating amorigig. 6(a) and (b) shows the segmented images produced by
experts was observed in a complex segmentation problem witle algorithms from the extended FALVQ 1 family far=1
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Fig. 4. Magnetic resonance (MR) image of the brain of an individual suffering from meningioma: (a) T1-weighted image, (b) T2-weighted image, (c)
spin density image, and (d) T1-weighted image after the patient was given Gadolinium.

with & = 1 anda = 0.1, respectively. Fig. 7(a) and (b) showsN = 100. Clearly, the tumor and the surrounding edema are
the segmented images produced by the algorithms from ttlearly identified by the algorithm from the extended FALVQ 1
extended FALVQ 2 family fom = 1 with =1 ands = 0.1, family with n» = 1 and &« = 1 (competition measures:
respectively. Fig. 8(a) and 8(b) shows the segmented imagés = 0.306, C,, = 0.629), the algorithm from the extended
produced by the algorithms from the extended FALVQ BALVQ 2 family with » = 1 and § = 1 (competition
family for n = 1 with v = 1 and+y = 0.1, respectively. measures4, = 0.264, C,, = 0.608), and the algorithm from

In all these experiments, the initial value of the learninthe extended FALVQ 3 family withhn = 1 andy = 1
rate wasrn, = 0.001 and the total number of iterations wagcompetition measurest,, = 0.167, C, = 0.5). However, the
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@ (b)
Fig. 5. Segmented MR images by the (unlabeled data) LVQ algorithm Witk 100and (a)no = 0.1, (b) no = 0.9.

tumor was not distinguished from surrounding tissue by thHer selecting the parameters of FALVQ algorithms. Various
algorithm from the extended FALVQ 1 family with = 1 algorithms from the extended FALVQ 1, FALVQ 2, and

and « = 0.1 (competition measuresd, = 0.469,C, = FALVQ 3 families were experimentally tested on the IRIS
0.661), the algorithm from the extended FALVQ 2 familydata set. In addition, FALVQ algorithms were used to perform
with n = 1 and 8 = 0.1 (competition measuresd, = segmentation of MR images of the brain. These experiments

0.468,C, = 0.661), and the algorithm from the extendedverified the validity of the proposed competition measures by
FALVQ 3 family with n = 1 and~y = 0.1 (competition testing the performance of FALVQ algorithms in the limit
measures:4,, = 0.467,C, = 0.661). As indicated by the where they resemble the (unlabeled data) LVQ algorithm.
values of the corresponding competition measures, for theleese experiments also illustrated the efficiency of FALVQ
values ofa, 3, v and n the nonwinning prototypes are notalgorithms used to perform the nontrivial vector quantization
significantly updated to match the input vector of the networkask involved in this application.

In fact, for these values af, 3, v andn the algorithms from
the extended FALVQ 1, FALVQ 2, and FALVQ 3 families

< APPENDIX A
resemble the behavior of Kohonen's (unlabeled data) LVQ

PROOF OF PROPOSITION 1

algorithm. ) ) )
The extrema of the interference function (25) satisfy the
VII. CONCLUSIONS condition
This paper presented a new methodology for constructing dw(z) _ /36_,31;((/337)" _ (Bt 1) —0. (A
FALVQ algorithms, which exploits the fact that the competi- dz n! (n—1)! '

tion between the winning and nonwinning prototypes during. .
the learning process is regulated by the interference fuﬁ%_nceﬁ # 0, the values ofs w hich correspond to extrema of
tions. According to this methodology, the development cS"f’(x) can be found by solving the equation

FALVQ algorithms begins with the selection of the inter-
ference function instead of the membership function. The
proposed methodology allows for a more direct impact on
the competition between the prototypes during the learnimgherez = 2. Forn = 1, the only root of (A2) iszg = 2. For
process and can be the basis for extending the existing= 2, the only positive root of (A2) iy = 1++/3 € (1,2).
families of FALVQ algorithms. This paper also introducedf n > 3, the roots of (A2) can be determined numerically.
two quantitative measures that establish a relationship Bé¢evertheless, it is shown here that, in the case were 1,
tween the formulation that led to FALVQ algorithms andA2) has only one positive roct; € (n,n + 1). Moreover,
the competition between the prototypes during the learning approaches asymptotically from the right as the value of
process. The proposed competition measures can be useiticreases.

N Zn—l

T o= (A2)
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@ (b)

Fig. 6. Segmented MR images by algorithms from the extended FALVQ 1 family with1 and (a)ae = 1, (b) « = 0.1 (N = 100, 5o = 0.001).

@)

(b)
Fig. 7. Segmented MR images by algorithms from the extended FALVQ 2 familywithl and (a)3 = 1, (b) 5 = 0.1 (N = 100, no = 0.001).
Consider the function

n n—1

Consider that: > n + 1. SinceZ — 1 > 1, then

Z z Loz
) =————-1=——+(—-1})-1. (A3
/() n! (n—=1)! (n—1)! (n ) (A3) i) =l (z 1) . g1 .
)= ——————— —_ > —
Clearly, f(0) = —1 # 0. Thus,z = 0 is not a root of (A2). (n—1)! " n!
If 0 < z<mn,thenz —1< 0. Sincez > 0, f(2) <0,Vz € (n+1)"—
(0,n). Thus, there is no root of (A2) in the interv), n). > n! 1>0,¥n> 1 (Ad)
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@)

Thus, there is no root of (A2) in the intervat + 1, c0). For

z=mn, fln)=-1<0.Forz=n+1,
_(n—i—l)"‘l n+1
Jin+1) = =1 < p —1)—1
(n+1)n 1t

=T  _1>0Vn>1.

o (A5)
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(b)
Fig. 8. Segmented MR images by algorithms from the extended FALVQ 3 familyaith1 and (a)y = 1, (b) v = 0.1 (V = 100, o = 0.001).

APPENDIX B
PROOF OF PROPOSITION 2

The extrema of the interference functies(-) defined in
(30) satisfydw(z)/dx = 0. Since
dhu()
dz
the extrema ofv(x) occur atz =

=—yn(l- 7$)n—2[2 —(n+ 1)yz] (B1)

;andx_,‘/n—_i_l 5

Since f(z) changes sign as takes values in the interval second-order derivative afi(r) is

[n, n+1], there exists at least one zero-crossing in this mterval

It can easily be verified that the equation

22 z
—|—=1)=0
(n—2)!<n—1 )

has no roots in the intervaln,n + 1]. This implies that

fi(z) = (A6)

f(#) has no extrema in this interval. Thus, the zero- crosslnlgi“JS w(z

is unique. As the value ofi increases,f(n) = —1 while

fln+1) =

the zero-crossing approaches asymptoticalfyom the right.

According to the above analysis, the positive root o

w'(xz) = 0 is determined bydx = n + u, wherey € (0,1).
Also, ;1 approaches zero as increases. Thereforep(z)
has a minimum at: = L(n + u). In conclusion,w(z) is
a monotonically decreasmg function in the interyal 1) if

L(n+p) > 1 or, equivalently, if3 < n+p. Sincep € (0,1),
thls condition is satisfied ifs < n.

Since v/(z) = w(x), it can easny be verified that(x)
possesses a maximum at= (n')n which is the root of

(Bz)" — n! = 0. Thus,u(z) is a monotonlcally increasing 2,

function in the interval0,1) if % (n')n > 1 or, equivalently,
if 5 < (nl)x.

n—1 _
wi (1) L increases exponentially. Thus,q o of x over the interval(0,1) if 1-2-

2w(z)

da:2

Clearly, d?w(xz)/dz?|,—1 = 0. In addition, forn > 1,

=?n(n = (1 - y2)" 3 -

(n+ Dvyz]. (B2)

d?w(x)
dx?

1_2
=5 nfr

n—3
2 n—1
= -1 >0. (B3
=257 ®3)
r) possesses a minimum at= 2 ?T As a result,
the interference functiom(z) is a monotonically decreasing
Saar > lon
?quivalently, if

2
n+1
Forn = 1, w(x) decreases linearly for any < 1. Thus, the

condition (B4) is valid for alln > 1.
The extrema ofu(-) occur atdu(z)/dx = w(z) = 0, that

v < (B4)

is, atz = % andz = %n_-i—l It can easily be verified that
dzd'l;(f)u_% = dwlx)| . =0. In addition, forn > 1,
(2) dw(x) _ n \"?
dz2 |“’;,n+1_ dx |T;%n}rl——’}/ﬂ n+1 <0.

(BS)
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Thus, the membership functiar(-) possesses a maximum af16] N. B. Karayiannis and M. Ravuri, “An integrated approach to fuzzy

z = %#1 In conclusionu(x) is a monotonically increasing
function in the interval0,1) if 247 > 1 or, equivalently, if
[17]
<1 (B6)
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