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ABSTRACT

We propose an online learning algorithm for the learn-
ing vector quantization (LVQ) approach in nonlinear
supervised classification. The advantage of this ap-
proach is the ability of the LVQ to adjust its codebook
vectors as new patterns become available, so as to
accurately model the class representation of the pat-
terns. Moreover this algorithm does not significantly
increase the computational complexity over the orig-
inal LVQ algorithm.

1. INTRODUCTION

Supervised classification approaches include, a) mul-
tilayer perceptrons (MLP) with gradient descent, and
b) learning vector quantization (LVQ) methods. Ap-
plications of these methods are wide (e.g., controls,
pattern recognition, fault classification signal/image
processing, finance, etc.), and are well known (see
[1], [2] for examples). Typically the MLP and LVQ
algorithms are difficult to implement in an on-line
industrial environment. This is because a new sig-
nal/pattern may not be adequately “represented” by
these approaches. This necessitates the development
and implementation of a simple but efficient online
learning technique for these methods, which could be
easily implemented without significant computational
overheads.

In this paper, we develop an online learning method
for the LVQ algorithm. The organization of this pa-
per is as follows. In Section II, we propose the online
LVQ approach for classification. In Section III we
include an example in using the online approach for
classifying two-dimensional patterns into two classes,
and show that the classification rate approaches the
Bayes limit. Section IV concludes the paper.

2. THE ONLINE LVQ ALGORITHM

Sunil Bharitkar is pursuing his Ph.D in the Signal and
Image Processing Institute (Electrical Engineering), University
of Southern Califomia. Los Angeles. CA 90089-2564 (E-
mail:bharitka@sipi.usc.edu)

Dr. D. Filev is with AMTD, Ford Motor Company, Michigan.
USA. (E-mail:dfilev@ford.com)

0-7803-6703-0/01/810.00©2001 IEEE

2.1. Background

The conventional LVQ algorithm belongs to a class of
signal approximation methods that model the proba-
bility density function f(x), of some stochastic vari-
able x € R, using a finite set of codebook vec-
tors, m; € R, (i = 1,2, ..., k) (where the subscript
i could represent the hypothesis index in detection
techniques). Once a set of codebook vectors are de-
termined, the approximation of x implies finding the
codebook m, closest to x in the input space for a
given distance metric (typically the L, space, with
p = 1,2,00). The determination of ¢ is achieved by
the following decision process,

[lx — me|| = mini{|lx — my||} m

ie.,
c=arg min;{||x — my||} @)

.An optimal selection of m; minimizes the average ex-
pected square of the quantization error, defined as

E= [lIx - mfx)dx @

Kohonen [1] discusses in detail the derivation of
a recursive method to update these codebook vectors
during the training phase by minimizing (3). This an-
alytical equation has the form given below,

mi(k + 1) = m,(k) <+ a(k)&c,-[x(k) - m.(k)] (4)

where, d.; represents the Kronecker delta function
(Bei = 1,c=14;0,c#1). :

A modification to (4) is the classic LVQ algorithm
as a form of a reward-punishment scheme given by
the following update (excitation-inhibition) of the ap-
propriate codebook vectors,

m.(k+1) = m(k)+ ak)x(k) — m(k)]
x,m; € S;; c€[lk]
m(k+1) = m(k) - ok)x(k) — mc(k))
X € -S:y m; € 8e; c€[LE)5)
mi(k+1) = m(k) i#c

where, a(k) is the learning rate, S is the complement
set of S¢. In this paper the adjustment of the learning
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rate follows the Kohonen rule,

(k)

ok +1) = 0w

©

where, ¢ = 1, if the classification'is correct; and { =
-1, if the pattern is misclassified.

Data from the respective classes are fed sequen-
tially to this algorithm (known as the training phase)
repeatedly until some criteria is satisfied. The ini-
tial choice of the codebook vectors may be impor-
tant depending on the application. The LVQ method
works very well in devising the class representations
by codebook vectors for a given set of patterns. These
patterns form the set of codebook vectors, whereby
these codebook vectors may then be considered as
sufficient information for their corresponding classes.

Unfortunately, in industrial applications, large quan-
tities of data are typically very difficult to obtain so
as to train the codebook vectors, which necessitates
an online methodology that will evolve the codebook -
vectors as more data becomes available. In the fol-
lowing subsection, we propose this simple, but yet
effective method for online training of the LVQ.

2.2, Online LVQ Algorithm

We shall assume that a limited training set is. avail-
able to form the codebook vectors. The breakdown
of data availability in an industrial setting may be in

words we have an expanding set of training vectors
which we can use for the LVQ. Unfortunately, we
cannot forever expand this training set for training the
LVQ due to the following reasons, a) by increasing
the training set size it becomes computationally pro-
hibitive to run the LVQ; b) this would always need
the presence of an expert to apply the new pattern
correctly to the LVQ; and c) by increasing the train-
ing set forever, we would end up training the LVQ by
patterns that were also used for training in the devel-

opment phase, thereby leading to problems associated

with overtraining (poor generalization).
So as a solution to the three problems mentioned
" above, we anneal the number of epochs (i.e., when-
‘ever a new pattern becomes available the number of
epochs for training the LVQ is reduced). However,
also modify the LVQ (5) with a gradual update rule
during the epoch due to the presence of a new pattern
in the training set (i.e., we would prefer not to change
the update vectors significantly to the presence of a
new pattern in the training set). Eventually this pat-
tern is retained in the training set for further training
whenever a different pattern becomes available. The
modified LVQ (5) update is given below,

m(k+1) = m(k)+

a(k) d(x(k)’mc(k))
22 d(x(k), my(k))
x(k), m¢(k) € S;;c € [1,k)

[x(k) — mc(R)];

two phases: (a) development phase (offline learning), me(k+1) = me(k) -

where training data is available in a batch, and (b) in- 1y (k) m,(k)) _ )
dustrial phase (online evolution), where for some lim- (k) >, d(x(k), m;(k)) [x(k) — me(k)];
ite{z('i durta;ltionl an.tta;(pelt‘t (el.g., an t(;1pe:jat:>r ir:\ aﬁ pli:;l.t) x(k) € 5o, me(k) € Seic € [L,k] -
guides the algorithm to classify the data. After this mi(k+1) = my(k) ic ®

phase, the algorithm may be considered to have de-
veloped to a state where it works in an unsupervised
fashion to classify an incoming pattern.

In the development phase, we train the LVQ (5)
by the conventional approach where we update the
codebook vectors sequentially with the training pat-
terns, until a set number of epochs is satisfied (an
epoch is the duration during which all training data
is applied to the LVQ once, we shall use the words it-
eration and epoch interchangibly). The initial choice
of the codebook vectors is governed as follows,

mz(o) = Xi,

xi€Siie(L,k] ()

where d(a,b) is an L,, distance metric between two
points a,b. These two small changes (annealing the
learning rate and modifying the codebook update) have
a positive impact during online adaptation as can be
seen from the results in the next section.

3. RESULTS

We shall apply the LVQ (3) and (8) for online clas-
sification of two-dimensional patterns drawn equally
likely from two normal distributions (two classes, Ci,
and C3), with their individual densities described by,

Assuming that we train the LVQ for N epochs <|Cy) = 1 ex __L x — 2y (9
with the limited training data, we proceed to the on- f(xlEn) 2no? P 207 Il = #1[I%) ©)
line phase to train the LVQ. In the online implemen- w = (0, O)T ; af =1
tation,whenever we recieve a pattern we add it to the
existing set of training vectors and retrain the LVQ to _ 1 1 2
obtain a modified set of codebook vectors . In other fxlCz) = 2rol exp(—-2-a—g-||x ~ kall)10)

395



7 S
oy

1,
inter

on Signal Processing and its Applications (ISSPA), Kuala Lumpur, Malaysia, 13 — 16 August, 2001. Organized by

the Dept. of Microelectronics and Computer Engineering, UTM, Malaysia and Signal Processing Research Centre, QUT, Australia

pe = (2,007 ; of=4
Since the patterns are drawn equally likely from the
two classes we have P(C;) = P(C3) =0.5.

Using Bayes citeria, the optimal decision bound-
ary between the two classes can be determined by ap-

plying the likelihood ratio test [3],

_XKIC) o,
= Fxicy) 56

where, A = P(C1)/P(C2) = 1. In our case, with the
log-likelihood of (11), we have

Afz) A ay

C1
§Cz

v 12)
On simplifying, the decision region is characterized
by,

Ae) = %L exp(oig le—pualP— s og =i
_ag P 20% g} 202 B2

2 4
XTX + Eprq §g; §(T + ].)
T = 422 (13)
o1

The misclassification of patterns can be determined
by computing the average probability of error, Pe,

P. = P(e|C1)P(C1) + P(e|C2)P(C2)  (14)
where,
T, , 2.7 4
P(e|C) = Px'x+ 3% M > §(T+ 1)}
x = py +n;(u)) =~ 0.1
n(u) ~ Np(0;0(l) (15)
and
T, , 2.7 4
P(e|C;) = P(x"x+ 3 H2 < §(T+ 1)]
X = [ty + np(u)) = 0.25
n(u) ~ Np(0;021) (16)

We have shown the computation for P(e|C1) in
the appendix. A similar method can be employed to
evaluate P(e|C3). Thus

P(e) ~0.17 17

The objective of this analysis is to demonstrate the

the online adaptive codebook method (8) converges

0

towards the Bayesian limit. To demonstrate this, the

experimental setup was as follows,

a) Generate 100 patterns (50 from C;, 50 from
Cz), ie., P(Cl) = P(Cg) = 0.5)

b) Train the LVQ (5) offline, with 10 patterns drawn
from C) and 10 patterns from C;. The two codebook

vectors would be considered as the final class repre-
sentation if we were not going to use the online LVQ
«8).

¢) We draw a pattern randomly from this set of
100 patterns for a given seed, and use this pattern as
new information to update the LVQ using (8) and an-
neal the epoch, so that when the next pattern is drawn
the LVQ trains for a lesser duration.

d) After the LVQ codebook vectors are updated
(8), we run a testing algorithm, containing the 100
patterns as test data, and compute the misclassifica-
-tion. This result is shown in Fig. (1), and Fig. (2). On
repeated application of new-patterns we see that the
misclassification tends to the Bayesian limit.

4. CONCLUSION

In this paper we proposed an important algorithm for
online pattern classification. This algorithm is partic-
ularly suitable when data is difficult to obtain (e.g., in-
dustrial and medical applications). We demonstrated
the convergence of the misclassification percentage
towards the Bayesian limit by updating the LVQ code-
book vectors (using (8), and annealing the epoch). By
adjusting the epcoh anneal rate, we may determine as
to how soon we would prefer to have a final steady
set of codebook vectors (which would not be updated
further).
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A. APPENDIX

We shall derive (15) by using the gaussian mo-
ment factoring theorem. Now

4

§(T+1)|x = 0+n(u))
(18)

Letz = n"n+ ZnTp, = Z?=1 (n? + Znipa(3)).

Then,

P(e]Cy) = P(x7'x+§xTu2 >

PeIcy) = Q=i
m, = E{z} o0,=+E{(z-m:)*}19)
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= 2 Ansd = 292 .
m, = E{Z; ni}+ EE{Z:I p2(i)n;} =207 (2 : .
2 C
62 = E{z*}-m?=E{(n'n +'§n‘u2)T .
s - e

Ay 1 Dnine LYQ caeabcatan patanmance

2 2 2
= B{Q_ni+ Y Y nind}+
i=1

i=1,i#j j=1 -
4 2 i T :
3B ni D onsme (i) ¢ :
i=1 j=1 ,é.
4 2 2 a_4 4,4 2 i i
+gllpsall®or — 4oy = doy + g7l ‘
since, from the gaussian moment factoring theor : : ' ?
we have ,
2 g. s;.q
B{Y nf} = 6o} , L
2 2 NI
2,2 — 4 g K H 3
E{ Z zv"f"j)} = 20, ( g - W ) w
i=1,i#j j=1 ) Moo vl Syl walt Wmnbgpeiin s
2 2 Fig. 2: Oning LVIZ clas@fication pantomance
E(Y n?Y) nime(j)} = O;since, E{n}} = 2p{eeane Biyes b

=1 j=1

Substituting (21) and (20) in (19) (with o} =
and p, = (2,0)7), we obtain .

P(e|C1) = 0.1037 ¢
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