Function Approximation Using LVQ and Fuzzy Sets

Shon Min-Kyu, Junichi Murata, Kotaro Hirasawa

Department of Electrical and Electronic Systems Engineering
Graduate School of Information Science and Electrical Engineering
Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

Abstract

Neural networks with local activation func-
tions, for example RBFNs (Radial Basis Func-
tion Networks), have a merit of excellent gen-
eralization abilities. When this type of network
is used in function approximation, it is very im-
portant to determine the proper division of the
input space into local regions to each of which a
local activation function is assigned. In RBFNs,
this is equivalent to determination of the loca-
tions and the numbers of its RBFs, which is
generally done based on the distribution of in-
put data. But, in function approximation, the
output information (the value of the function to
be approximated) must be considered in deter-
mination of the local regions. A new method
is proposed that uses LVQ network to approx-
imate the functions based on the output infor-
mation. It divides the input space into regions
with a prototype vector at the center of each re-
gion. The ordinary LVQ, however, outputs dis-
crete values only, and therefore can not approx-
imate continuous functions. In this paper, fuzzy
sets are employed in both of learning and out-
put calculation. Finally, the proposed method
uses the back-propagation algorithm for fine ad-
justment. An example is provided to show the
effectiveness of the proposed method.

1 Introduction

Neural networks with local activation func-
tions, for example RBFNs(Radial Basis Func-
tion Networks), have a merit of excellent gen-
eralization abilities. So they have been widely
used in function approximation. When this type
of network is used in function approximation, it
is very important to determine the proper divi-

0-7803-7087-2/01/$10.00 © 2001 IEEE

1442

sion of the input space into local regions to each
of which a local activation function is assigned.
In RBFNs, this is equivalent to determination
of the locations and the numbers of its RBFs,
which is generally done based on the distribu-
tion of input data by using, for example, cluster-
ing technique; more number of RBFs are placed
where the input data are dense while the ar-
eas where the input data are sparsely distributed
have fewer RBFs. Then the network weights are
adjusted to minimize the approximation errors.
So, the local regions are determined by the input

- information, and the output information is used

only for the later adjustment. However, in func-
tion approximation, the above procedure does
not work well. Consider a set of input data which
are uniformly distributed. Then, the above pro-
cedure will give a uniformly divided input space.
But, in the areas where the value of the func-
tion to be approximated changes violently, there
should be a lot of small local regions (a lot of
RBFs) to obtain good approximation, while in
the areas where the change of the function val-
ues is very small, fewer regions (fewer RBF's) will
suffice. So, the output information (the value of
the function to be approximated) must be con-
sidered in determination of the local regions.

Here, a new method is proposed that uses
LVQ (Learning Vector Quantization) network to
approximate the functions. LVQ also has a char-
acteristic of local activation functions. Each out-
put node is given a prototype label which, used
in function approximation, is its associated out-
put value. For each output node, through LVQ
learning, an appropriate local region is found
where the output is.-approximated by the label
value. Thus the input space division is done
based on the output information. The ordinary
LVQ, however, outputs discrete values only, and
therefore can not approximate real-valued func-

tions. In this paper, fuzzy sets are employed
in both of learning and output calculation. In
the learning phase, unlike the ordinary LVQ, the
true output value may not completely match any
of the prototype labels because the true output
can take any real value while there are only a
finite number of prototypes. This possible error
between the true value and the winner’s label
introduces fuzziness in the judgment of whether
the winner is correct or not. A fuzzy set is
assigned to each node to cope with this fuzzi-
ness. To calculate the network output for the
input points in between the prototypes, inter-
polation is necessary and is done using another
fuzzy set. Finally, the proposed method uses the
back-propagation algorithm for fine adjustment.

An example is provided to show the effective-
ness of the proposed method.

2 LVQ Networks and their difficul-
ties in function approximation

Kohonen’s LVQ network is a supervised learn-

ing algorithm associated with the competitive .

network shown in Fig.1. The network consists
of an input layer and an output layer. A weight
vector w; is associated to the i-th node in the
output layer. In learning phase, the LVQ net-
work selects a weight vector closest to a given in-
put vector and then compares the output of LVQ
network with the output of training data. If they
match, the selected weight vector is updated so
that it approaches the input vector. Otherwise,
the selected weight vector is updated so that it
moves away from the input vector. After the
learning, the LVQ network chooses the nearest
weight vector to a given input vector, and out-
puts its ‘label’ as the network output. Thus, a
weight vector can be regarded as the center of a
local region in the input space.

In function approximation problems, a certain
fixed real value must be assigned to each weight
vector as its ‘label’. So, if there are a sufficient
number of weight vectors with various ‘label’ val-
ues, they found their proper locations by their
learning. This realizes the division of the input
space based on the output values of the training
data. ‘

However, when the ordinary LVQ algorithm
is used in function approximation, it has some
problems. Let us consider an example function

1443

shown in Fig.2(a). The LVQ training algorithm
drives a weight vector closer to a training in-
put vector when the ‘label’ value of the weight
vector matches the training output value. But,
there are only a finite number of ‘labels’ while
the training output data can take any real num-
ber. So, there are an infinite number of data
that do not match any weight vector ‘label’, and
thus the LVQ learning algorithm in its original
form does not work well in function approxima-
tion problems. Another problem occurs when
the output is calculated after learning. The LVQ
network output can take a value among the finite
set of ‘label’ values only. So, the approximation
of the training data shown in Fig.2(a) by the
LVQ network is at best a piecewise step function
as shown in Fig.2(b).

3 LVQ network and Fuzzy Sets
3.1 Learning of LVQ network

In the learning phase, to overcome the above
mentioned problem, the proposed LVQ network
uses fuzzy sets. The fuzzy sets calculate how
much a training output value and a ‘label’ value
of a weight vector match. The weight vector is
updated by the degree of matching. Therefore,
the weight vector is trained even if the match-
ing is not complete. A fuzzy ‘label’ is assigned
to each weight vector. Fig.3 shows the typi-
cal membership functions for the fuzzy ‘labels’.
In the figure, on the interval of possible output
value [MIN, MAX], five fuzzy ‘labels’ are defined,

label 2 label ¢

label 1

ouput layer

Fig. 1: Structure of LVQ network.

where MIN(=n0), nl, n2, n3 and MAX(=n4)
are representative values of the fuzzy ‘labels’.
These membership functions are prepared from
the output information on a training data set
before performing training. For each ‘label’ n;,
r weight vectors are assigned. In other words,
there are r weight vectors that have the same
‘label’ n;. The weight values are initiallized ap-
propriately. The weight vector updating is done
based on the degree of matching of the ‘label’
and the training output value which is measured
by the membership function. Fig.4 illustrates
the idea. Suppose that the k-th training output
value is y(k) and that the weight vector with
the ‘label’ n2 is nearest to the training input.
Only this weight vector is updated. The degree
of matching is calculated as a(k) by the member-
ship function. This degree a(k) determines how
close the weight vector can approach the current
training input vector. The amount of updating
a weight Aw;; for this k-th training pair is ex-
pressed by equations (1), (2) and (3),

|

Auly = n- M(a(k)) - (z5(k) — wi), (1)
M (a(k)) E - a(k), @)
E (MAX — MIN)/u. 3)

Here u is total number of labels n;. When a(k)
is 0, Aw!—cj = 0. This is repeated for all the train-
ing data k=1,2,3,. - - I. Then, updating of actual
weights is performed by equation (4),

t k

_ (Aw
2B

2

Wij(new) = Wij(old) T

Where m; is the number of non-zero Awfj
(k=1,2,- - -,l). When the weight vector converges,
the sum of Aw;; over k=1,2,- - -,[, becomes zero.

output output

b output value

input inp

® ®

Fig. 2. Difficulties with LVQ algorithm in fune-
tion approximation.

ut

1444

—» y

MIN nl 'p2 n3 MAX

Fig. 3: Membership functions.

.....

AV Yy
ln2 #n3 maAXx
y(K)

Fig. 4: Use of membership functions in learning.

This gives the limit value of the weight as

Sy = et (M(a(k)) - z5(k))
7 Yems (M(a(k))
This imposes the limit on how close the weight

vector can approach the input vector, and the
limit depends on the degree of matching a(k).

w.

(5)

3.2 Output of LVQ Network

The ordinary LVQ network outputs discrete
values only, and therefore can not approximate
a continuous function(Fig.2(b)). In this paper,
using fuzzy algorithm for output layer, the LVQ
network can output continuous values and there-
fore approximate continuous functions.

For a given input vector, the LVQ network
selects p + 1 nearest weights to the input, and
smooths their representative ‘label’ values using
fuzzy sets defined on the input space. The equa-
tion of fuzzy algorithm is shown by equation (6),

where n; is the representative value of ‘label’ of
node 4, and p is the dimension of input . The

output

node 2

\\\T.x\l‘ode 1
|
A
X

input

Fig. 5: Output value among nodes.

output

T . ot

input

Fig. 6: Output value using fuzzy algorithm.

procedure is illustrated by Fig.5. The fuzzy algo-

rithm outputs the curve shown in Fig.6 which is
in contrast to Fig.2(b) obtained by the ordinary

LVQ network.

4 Re-learning of weight vectors
and Back-Propagation

In the learning, not all the weight vectors are
updated. It is because some weight vectors lo-
cate far away from their matching(in a fuzzy
way) training data in the input space. In or-
der to obtain the best result, it is preferable to
re-train those weight vectors that have not been
trained.

Let S denote the number of untrained weight
vectors in the first learning. Now, their labels are
re-assigned. If many of the weight vectors corre-
sponding to a label n; were updated in the first
learning, this implies that these weight vectors
are necessary to approximate the given function

1445

and suggests that use of more weight vectors cor-
responding to this label n; will be benificial. Re-
assignment of labels of untrained weight vectors
is done based on this idea. LVQ network inves-
tigates the number of the trained weight vectors
t; for each label n; after the first learning. Then
each label n; is sorted in ascending order of ;.
This order is-denoted by j;, i=1,2,--- ,u. The
number 7; of re-assiged weight vectors to label
n;, is determined by j; as follows:

(7)

Since the total number of untrained weight vec-
tors is S, the positive constant 8 must satisfy
the following:

i =17Ji B

S=1-f+2-f+,--,+u-B. (8

This gives

2.5
u-(u+1) ©)
To assign an integer value te each 7;, equation
(7) is slightly changed as

B=

Ji - 18] Jf 1€ g < (u—1),
u—1
Y S-S0 GB) Lifi=w,
Ji=1

(10)
where [f] is the largest integer smaller than (.
Therefore, a large t; gives a large ;. Re-learning
is carried out like the first learning for the unup-
dated weight vectors. So, the nearest weight vec-
tor to the training vector is chosen among those
weight vectors only. This procedure can produce
much better result by giving more weight vectors
to the labels which were well used in the first
learning.

Finally, the ‘labels’ of trained weight vectors
are updated by back-propagation algorithm for
fine adjustment after re-learning.

5 Example

To study the performance of the proposed
method, it is applied to a function approxi-
mation problem where the target function is
shown as Fig.7. Fig.7 shows the 256 training
data. The representative values are generated
by (MAX 4+ MIN)/10 and are assigned to the
output nodes of LVQ network. The LVQ net-
work consists of 250 output nodes. Fig.8, 9 and

Fig. 7:

Fig. 8: Error after first learning.

10 show the error after each learning stage. The
error decreases as the learning stage proceeds.
This confirms the usefulness of re-learning and
BP adjustment. Fig.11 shows the distribution of
trained weights. We can easily find that more
weights are located where the change of function
value is larger in Fig.11. Result of function ap-
proximation using the proposed LVQ algorithm
with re-learning and BP adjustment is shown in
Fig.12, which approximates the target function
well.

6 Discussions and Conclusions

This paper presents a method for approxima-
tion of functions using LVQ algorithm and fuzzy
sets. More specifically, this paper investigates in-
put space division by using the output informa-
tion in addition to input information of training
data. The effectiveness of the proposed method

1446

Fig. 9: Error after re-learning.

o
LRt
s e
= o
e S
e S

Fig. 10: Error after BP training.

is verified by an example. In this method, one
weight vector is updated for a given training data
vector. But one data vector may contain useful
information for updating more than one weight.
If all of the weight vectors which correspond to
a training data vector are trained, more efficient
function approximation will be realized. Since
the fuzzy membership functions for the output
layer are straight lines, the approximated func-
tions are not smooth. Using the fuzzy sets of
other shape can approximate a lot of functions
smoothly.

References

[1] Kohonen,T, ?Self-Organizing Maps”,
Springer Series in Information, Sciences,
1995.

[2] Kohonen, T, "Learning Vector Quantization

3 B
+ * +
2 . . .
[+
+ . by
R B
B - -+ P
.
1 : A
+ + + +
.
N
> 0F . . 4 s 4
N + .
: : .
. PN
PO “
adt Do e .,
. N . PO
.
R
2 + A
= - + -
.o
“ . .

3 2 4 o 1 2 3

Fig. 11: Weight distribution after learning.

Fig. 12: Result of learning of data.

for Pattern Recongition”, Technical Report
TKK-F-A602, Helsinki University of Tech-
nology,Finland,1990.

[3] S.Chen, C.F.N.Cowan, and P.M.Grant, ”Or-
thogonal Least Squares Learning Algorithm
for Radial Basis Function Networks”, IEFE
Trans. Neural Network, vol.l2, 1991, 302-309.

[4] R. Katayama, Y.Kajitani, K.Kuwata,
Y.Nishida, ”Self generation radial basis
function as neuro-fuzzy model and its ap-
plication to nonlinear prediction of chaostic
time series”, 2nd Int. Conf on Fuzzy Systems
(FUZZY-IEFEE’93), 1993, 407-414.

1447

