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Abstract

We present « novel growing RBF network structure
ustng SOM in this paper. It consists of SOM and RBF
networks respectively. The SOM performs unsupervised
learning and also the weight vectors belonging to its out-
put nodes are transmitted to the hidden nodes in the
RBF networks as the centers of RBF activation func-
tions, as a result one to one correspondence relation-
ship is realized between the output nodes in SOM and
the hidden nodes in RBF networks. The RBF networks
perform supervised training using delta rule. Therefore,
the current output errors in the RBF networks can be
used to determine where to insert a new SOM unit ac-
cording to the rule. This also makes it possible to make
the RBF networks grow until a performance critérion is
fulfilled or until a desired network size is obtained. The
stmulations on the two-spirals benchmark are shown to
prove the proposed networks have good performance.

1 Introduction

The main difficulty faced in the field of feedforward
neural networks (FNN’s) is model selection. Model se-
lection involves matching the complexity of the function
to be approximated with the complexity of the model.
FNN model complexity is determined by the factors such
as the number of weights, the values of weights, and
weight connection topology. If the model does not have
the enough complexity to approximate the desired func-
‘tion, underfitting and poor generalization occur. If the
model is too complex, then it may overfit the data and
also give poor generalization.

In one group of the model selection techniques, train-
ing begins with an oversize network which is then sim-
plified. Pruning is one of such techniques{l]. The non-
convergent technique of early stopping[2] also uses an
oversize network, and works by stopping the training at
a point where the performance for a validation set begins
to worsen. Since the validation set is a representative of
the underlying function, the performance for this data
set will worsen when a model is formed, which is more
complex than the underlying function.

But the main disadvantage is the difficulty of speci-
fying what size of the network should actually be con-
sidered as an oversize network a priori. If the initial
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network selected is too small, it will be unable to have
a good solution and hence underfit the data. On the
other hand, selecting an initial network that is much
larger than required makes training computationally ex-
pensive.

Another group of the model selection techniques uses
constructive methods[3]. These methods start with a
minimal size network, and sequentially add units ac-
cording to some criterion until an appropriate level is
reached. Constructive algorithms will spend the major-
ity of their time on training networks smaller than the
final network, as compared to the algorithms that start
training with the oversize networks. There are a number
of inherent advantages in constructive algorithms over
the algorithms using the oversize networks. But one
must define the type of training algorithms and how to
connect the new hidden nodes to the current networks.

Generally speaking, Self-organizing neural network
models generate mapping from high-dimensional signal
spaces to lower-dimensional topological structures[4]-
[6]. These mapping are able to preserve the neighbor-
hood relations in the input data. Most of the works car-
ried out so far on SOM’s have concentrated on systems
with a single self-organizing layer. This self-organizing
layer has generally a fixed number of neurons. How-
ever in recent years, some adaptive/multilayer SOM
models have also been proposed. Lee et al.[7T]proposed
a self-development neural network for adaptive vector
quantization. The network has one self-organizing layer
and two levels of adaptations—namely structure and pa-
rameter (synaptic vector) levels. Kohonen’s topology
preserving mapping algorithm was used for parameter
adaptation. Wu et al.[8] investigated a supervised two
self-organizing layer SOM. However their method did
not employ any structure with adaptation scheme.

Cho [9] proposed a structure-adaptive SOM with a
single self-organizing layer. Bauer et al.[10]presented a
growing self-organizing map (GSOM) algorithm. The
GSOM has generated a hypercubical shape which is
adapted during the learning. Fritzke [11]proposed a
structure adaptation algorithm for SOM which has
one self-organizing layer with sophisticated multidimen-
sional lattice topologies. The algorithm includes cell in-
sertion and removal based on the local counter variable.
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According to these, we propose a network named
growing RBF using SOM in this paper, which is com-
posed of two kinds of networks such as a basic network
and a cluster network. In such network’s structure, a
RBF network and a Kohonen SOM network are adopted
as the basic network and cluster network, respectively
(see Fig.1). The relationship between the output nodes
in SOM and the hidden nodes in the RBF network is

one to one correspondence.

2 Structure of Growing RBF Network
Using SOM

2.1 Basic Structure

Let R= (r1,74. -+, 7n) denote the input vector, and
Y is the output of the basic network. Each node in the
output layer of SOM has a weight vector, say W;, at-
tached to it, where W, = (w1, wia, - -, win) 1er. Also
Wy is transmitted to the hidden nodes in the RBF net-
work as its center of RBF activation function. The usual
procedure for training such a network consists of two
consecutive phases, an unsupervised and a supervised
one.

This network starts with a minimal size network, and
then sequentially adds neurons according to the crite-
rion. SOM network performs unsupervised learning. It
generates ordered mappings of the input data onto some
low-dimensional topological structure, which means that
the SOM defines a topology mapping from the input
data space onto the output nodes. Then the weight vec-
tor W, belonging to the output in SOM are transmitted
to the hidden node in the RBF network as its center of
RBF activation function.

The RBF network performs supervised training using
delta rule. The current output errors in the RBF net-
work are used as the values of the current best-matching

unit in SOM to determine where to insert a new SOM -

unit according to a rule. This also makes it possible to
make the RBF network grow until a performance crite-
rion is fulfilled or until a desired network size is reached,
because of their connecting relationship between the
output nodes in SOM and the hidden nodes in the RBF
network.

2.2 Center adaptation

When an input vector R is given to this network, at
first in SOM, the Euclidean distances between each W,
and R are computed. The output nodes of SOM com-
pete each other, but the node ¢ whose connected weight
vector is closest to the current input vector (minimum
distance) wins, say best-matching unit.

c=ary Min leL {HR—VV( H} (l)

After determining the best-matching unit for the cur-
rent input pattern, this best-matching unit and its topo-
logical neighbors should be increased according to the

principle proposed by Kohonen[4]-[6]. There are, how-
ever, two differences:

e The -adaptation strength is ‘constant over time.
Specifically, we use constant adaptation parameters
o, and o, for the best-matching unit and its neigh-
boring units, respectively.

e Only the best-matching unit and its first topologi-
cal neighbors are adapted.

Basic Network (RBF)

Figure 1: Structure of Growing RBF Network using
SOM

Here, 1et N, denotes the set of the first topological
neighbors of the winner c.
An update rule in SOM can be formulated as follows:

We ¢ We + ac* (R - W,)
Wy« W, +a, x(R=W,)
W((—Wl

(for il € N) (2)
(otherwise)

The inputs of the basic network is the same as the
ones in SOM. Each Gaussian unit ! has an associated
vector W, indicating the center in the input vector space
and the standard deviation o; defined by using the mean
distance of its first neighboring Gaussian units.

For a given input vector R, the activation function of

unit [ in RBF is described by:

A
IR ;’VIH) 3)

g

fi(R) = exp(—
The Gaussian units are completely connected to the
linear output node by weighted connection w;. There-

fore the value of the output node in the RBF network
is computed by:

Y= Zwlfl (4)

leL
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2.3 Local error measure

The weight w; of the output layer is trained to pro-
duce the desired value T" at the output node. Common
delta rule is used.

w w4+ BT ~Y)fi (foralll € L) (5)

where ¢ is the learning rate.

The error caused by the training data is used to deter-
mine where to insert a new unit in the input space. Here
for each unit [ in SOM, we define a local counter vari-
able V} basically containing the errors of the node where
the best-matching for the current input is obtained.

; 2 ] —
Vl<-{ ::;+|T—Y| forl=c¢ (6)

otherwise

2.4 Insertion of new cell

After a fixed number of adaptation steps M in SOM
and RBF network, we determine the unit s with the
largest values of Vj:

s=arg Maz 1 {Vi} (7

Then, we look for a unit with the largest error counter
value among the first neighbors N,. This is a unit f
satisfying:

[ =arg Mazx en, {Vi} (8)

And in those common neighbors NV 1 of s and f,

we determine the cell u with the largest distance from
cell s:

u=arg Maz ien o AIWi- W} (9)

After that, we now can insert a new unit I between s
and u. The position of a new unit I in the input space
1s initialized as:

Wi = (W, + Wy)/2 (10)

And to keep topological relationship in SOM, we
should set s, f and those common neighbors N ; as

I’s first neighbors. Then, the original neighboring rela-
tionship between s and f is relevantly cancelled.

Doing so, we may say that the local optimum regard-
ing SOM structure and basic network’s output error is
realized. This is due to the fact that new units are
only inserted in those regions of the input space where
misclassifications still occur and the errors are locally
maximuin.

2.5 Determining of initial weight about the
new cell
Whenever a new unit [ is inserted, a weight wy con-
necting to the output node in RBF network should be
determined. Here, we make initial w; equal to 0 sim-
ply not to make influence to the output value of RBF
network after inserting.

/2.6 Stopping criterion and the whole learn-

ing process

To prevent the network growing indefinitely, a stop-
ping criterion has to be defined. In the simplest case
one can specify a maximum number of allowed units
and halt the process when this number is achieved or
surpassed.

The whole process of the learning of the proposed
network is arranged as follows:

o Initialize the SOM’s structure.

e Create a weighted connection from each RBF cell
to the output unit in the RBF network.

e Associate every cell in the RBF network with a
Gaussian function.

e while (an appropriate criterion is not reached)

— repeat A times
* Choose I/O-pair from training data,
* Determine best-matching unit ¢
(see eq.1);
* Increase matching for ¢ and its first neigh-
bors in SOM (see eq.2);
* Compute activation f; (see eq.3);
* Compute the output Y (see eq.4);
-* Perform one step delta-rule learning for
the weights w; (see eq.5);
* Add local counter variable V}
(see eq.6);
~ Determine cell s with maximum local counter
value (see eq.7);
— Determine cell f with maximum local counter
value among sth cell’s first neighbors N, (see
eq.8):
Determine cell u with the largest distance be-
tween s and the common neighbors Nyqf (see
eq.9);
Insert a new cell 7 between s and u
(see eq.10);

1

— Give the new cell I an initial weight connecting
to the output in the RBF network;

o Stop if pre-specified conditions are met.

—109—



