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Abstract—This paper presents a general methodology for the
development of fuzzy algorithms for learning vector quantization
(FALVQ). The design of specific FALVQ algorithms according to
existing approaches reduces to the selection of the membership
function assigned to the weight vectors of an LVQ competitive
neural network, which represent the prototypes. According to the
methodology proposed in this paper, the development of a broad
variety of FALVQ algorithms can be accomplished by selecting
the form of the interference function that determines the effect of
the nonwinning prototypes on the attraction between the winning
prototype and the input of the network. The proposed method-
ology provides the basis for extending the existing FALVQ 1,
FALVQ 2, and FALVQ 3 families of algorithms. This paper
also introduces two quantitative measures which establish a rela-
tionship between the formulation that led to FALVQ algorithms
and the competition between the prototypes during the learning
process. The proposed algorithms and competition measures are
tested and evaluated using the IRIS data set. The significance
of the proposed competition measures in practical applications
is illustrated by using various FALVQ algorithms to perform
segmentation of magnetic resonance images of the brain.

Index Terms— Competition measure, competitive learning,
competitive learning vector quantization (LVQ) network,
construction methodology, interference function, membership
function, vector quantization, update equation.

I. INTRODUCTION

T HE objective ofvector quantization(VQ) is the repre-
sentation of a set of feature vectors

by a set of prototypes . Thus,
vector quantization can also be seen as a mapping from an-
dimensional Euclidean space into the finite set , also
referred to as the codebook.

Codebook design can be performed by clustering algo-
rithms, which are typically developed by solving a constrained
minimization problem using alternating optimization. These
clustering techniques include the crisp-means [4], fuzzy
-means [2], and generalized fuzzy-means algorithms [8],

[9].
Recent developments in neural network architectures re-

sulted inlearning vector quantization(LVQ) algorithms. LVQ
is the name used for unsupervised learning algorithms as-
sociated with the competitive network shown in Fig. 1. The
network consists of an input layer and an output layer. Each
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node in the input layer is connected directly to the cells, or
nodes, in the output layer. A prototype vector is associated
with each cell in the output layer as shown in Fig. 1.

Kohonen [18] proposed an unsupervised learning scheme,
known as the (unlabeled data) LVQ. This algorithm can be
used to generate crisp-partitions of unlabeled data vectors.
Pal et al. [20] identified a close relationship between this
algorithm and a clustering procedure proposed earlier by
MacQueen, known as the sequential hard-means algorithm.
It must be emphasized here that the LVQ 1, LVQ 2, and
LVQ 3 algorithms proposed by Kohonen [17], [19] for fine
tuning theself-organizing feature map(SOFM) are supervised
in the sense that their implementation requires labeled feature
vectors, that is, feature vectors whose classification is already
known.

Huntsberger and Ajjimarangsee [7] attempted to estab-
lish a connection between feature maps and fuzzy clustering
by modifying the learning rule proposed by Kohonen for
the SOFM. However, the resulting hybrid learning scheme
lacked theoretical foundations, formal derivations and clear
objectives. Bezdeket al. [3], [21] proposed abatch learning
scheme, known asfuzzy learning vector quantization(FLVQ).
Karayianniset al. [10], [16] presented a formal derivation of
batch FLVQ algorithms, which were originally introduced on
the basis of intuitive arguments. This derivation was based on
the minimization of a functional defined as the average gener-
alized distance between the feature vectors and the prototypes.
This minimization problem is actually a reformulation of the
problem of determining fuzzy-partitions that was solved by
fuzzy -means algorithms [2], [6].

Pal et al. [20] suggested that LVQ can be performed
through an unsupervised learning process using a competitive
neural network whose weight vectors represent the prototypes.
According to their formulation, LVQ can be achieved by min-
imizing a loss function which measures the locally weighted
error of the input vector with respect to the winning prototype,
that is, the prototype that is closest to the input vector in
the Euclidean distance sense. This formulation resulted in the
generalized learning vector quantization(GLVQ) algorithm
[20] and the GLVQ-F algorithms [11].

Karayiannis and Pai [12]–[15] proposed a framework for
the development offuzzy algorithms for learning vector quan-
tization (FALVQ). The development of FALVQ algorithms
was based on the minimization of the weighted sum of the
squared Euclidean distances between an input vector, which
represents a feature vector, and the weight vectors of the
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Fig. 1. The LVQ competitive network.

LVQ network, which represent the prototypes. The distances
between each input vector and the prototypes are weighted by
a set of membership functions, which regulate the competition
between various prototypes for each input and, thus, determine
the strength of attraction between each input and the prototypes
during the learning process. The design of specific FALVQ
algorithms reduces to the selection of membership functions
that satisfy certain properties [13], [15].

This paper is organized as follows: Section II presents
a review of the formulation that led to the development
of a broad variety of FALVQ algorithms. Section III pro-
poses a new methodology for constructing FALVQ algorithms.
Section IV presents the application of the proposed methodol-
ogy in the development of the extended FALVQ 1, FALVQ 2,
and FALVQ 3 families of algorithms, respectively. Section V
introduces two competition measures that can be used to
control the competition between the winning and nonwinning
prototypes during the learning process. Section VI presents an
experimental evaluation of the extended FALVQ algorithms
and the proposed competition measures. Section VII contains
concluding remarks.

II. FUZZY ALGORITHMS FOR

LEARNING VECTOR QUANTIZATION

Consider the set of samples from an -dimensional
Euclidean space and let be the probability distribution
function of . Learning vector quantization is

frequently based on the minimization of the functional [20]

(1)

which represents the expectation of the loss function
, defined as

(2)

In the above definitions, is a set of
membership functions which regulate the competition between
the prototypes for the input . The specific
form of the membership functions determines the strength of
attraction between each input and the prototypes during the
learning process [12]–[15]. The loss function is often defined
with respect to the winning prototype. Assuming thatis the
winning prototype corresponding to the input vector, that is,
the closest prototype to in the Euclidean distance sense, the
membership can be of the form

if
if . (3)

In such a case, the loss function measures the locally weighted
error of each input vector with respect to the winning prototype
[20].
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The minimization of (1) using gradient descent is a difficult
task, since the winning prototype involved in the definition
of the loss function is determined with respect to the
corresponding input vector . Following Tsypkin [22],
Palet al.suggested the use of the gradient of the instantaneous
loss function (2) when the probability distribution function

is not known [20]. This approach implies thesequential
update of the prototypes with respect to the input vectors

and is frequently used in the development of learning
algorithms [17], [22].

The development of fuzzy algorithms for learning vector
quantization requires the selection of the membership func-
tions assigned to the prototypes [12]–[15]. A fair competition
among the prototypes is guaranteed if the membership function
assigned to each prototype: 1) is invariant under uniform
scaling of the entire data set; 2) is equal to one if the prototype
is the winner; 3) takes values between one and zero if the
prototype is not a winner; and 4) approaches zero if the
prototype is not a winner and its distance from the input vector
approaches infinity.

The relationship between the form of the membership
function and the competition between the prototypes during the
learning process can be quantified by focusing on the relative
contribution of the nonwinning prototypes to the loss function
(2). If the membership is given in (3), the loss function (2)
can be written as

(4)

Assuming that is the winning prototype, each nonwinning
prototype contributes to the loss function through
the term . Thus, therelative contributionof the
nonwinning prototype with respect to the winning prototype

can be measured by the ratio .
The search for admissible membership functions can be

facilitated by requiring that is a
function of the ratio , that is,

(5)

The obvious advantage of this choice is that the properties of
relate directly to the relative contribution of the prototype

to the loss function . Since
, the corresponding function is of the form
. In the trivial case where

the membership function (3) corresponds to the nearest
prototype condition, which results in Kohonen’s (unlabeled
data) LVQ algorithm. In this case, the nonwinning prototypes
are not attracted by the input and have no effect on the
attraction of the winning prototype by the input.

If , the consistency of the corresponding
membership function with the admissibility conditions pre-
sented above can be guaranteed by selecting functions
satisfying certain properties [13], [15]. Among the functions

that satisfy the admissibility conditions, the development
of FALVQ algorithms is based in this paper on differen-
tiable functions which satisfy the following conditions:

1) ; 2) approaches one
as approaches zero; 3) is a monotonically decreasing
function in the interval ; and 4) attains its minimum
value at .

A variety of fuzzy algorithms for learning vector quantiza-
tion can be derived by minimizing the loss function (4) using
gradient descent. If is the input vector, the winning prototype

can be updated by [13], [15]

(6)

where , with

(7)

Each nonwinning prototype can be updated by [13],
[15]

(8)

where , with

(9)

The update of the prototypes during the learning process
depends on the learning rate , which is a mono-
tonically decreasing function of the number of iterations.
The learning rate can be a linear function ofdefined as

, where is its initial value and
the total number of iterations predetermined for the learning
process.

According to (6), the update of the winning prototypeis
affected by all the nonwinning prototypes , while
represents theinterferencefrom the nonwinning prototype
to the update of the winning prototype. In fact, the term

represents the cumulative effect of the nonwinning
prototypes on the attraction of the winning prototype by the
input vector . In contrast, (8) indicates that the update of each
nonwinning prototype is affected only by the winning
prototype . In this case, represents theinterferencefrom
the winning prototype to the update of the nonwinning
prototype .

The selection of specific membership functions can be
facilitated by examining the relationship between the form of

and the competition among the prototypes in the extreme
cases where equals its lower and upper bounds specified
by the inequality . If

, then and . In this case,
the winning prototype is updated according to

(10)

while the nonwinning prototypes remain unchanged.
If , then . Since

, (7) indicates that and
. According to (6), the winning prototype

is updated by

(11)
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TABLE I
MEMBERSHIP FUNCTIONS AND INTERFERENCEFUNCTIONS FOR THE

FALVQ 1, FALVQ 2, AND FALVQ 3 FAMILIES OF ALGORITHMS

Under the same assumption, . Thus, the
nonwinning prototypes are not updated with respect
to the input regardless of their distance from the winning
prototype .

The above formulation provided the basis for the develop-
ment of the FALVQ 1, FALVQ 2, and FALVQ 3 families of
algorithms [13], [15]. Table I shows the membership functions
that generated these families of algorithms and the correspond-
ing interference functions. If is the input vector, then the
winning prototype is updated by (6) with evaluated in
terms of the interference function shown in Table I as

. The nonwinning prototypes
can be updated by (8) with evaluated in terms

of the interference function shown in Table I as
.

The algorithms described above can be summarized as
follows.

1) Select ; fix ; set ; randomly generate an
initial codebook .

2) Calculate .
3) Set .
4) For each input vector :

• find such that
.

• calculate
.

• calculate
.

• calculate
.

• update by
.

• update by
.

5) If , then go to Step 2).

III. CONSTRUCTING FALVQ ALGORITHMS

BASED ON THE INTERFERENCEFUNCTION

The development of FALVQ algorithms was based on the
selection of membership functions that satisfy certain proper-
ties [12]–[15]. Given a membership function, the competition
of the prototypes during the learning process is determined
by the form of the corresponding interference functions
and . Thus, the development of FALVQ algorithms with
desired behavior can be facilitated by directly selecting the
interference functions instead of the membership function.
This can be accomplished easily in this case, since

. If is of the form , then

(12)

According to the properties of ,

(13)

Since is a monotonically decreasing function in the
interval and also

. Since

(14)

Since , the last admissibility condition for the
interference function can be established by observing that

(15)

An admissible membership function must satisfy the
conditions and . Thus,

(16)

In summary, an integrable function is an admissible
interference function if it satisfies the following conditions:
1) approaches one as approaches zero; 2)

; and 3) . It must be emphasized
here that is not necessarily a monotonically decreasing
function in the interval .

Given an interference function , the corresponding
membership function can be calculated as

(17)

The constant can be determined by requiring that
approaches zero as approaches zero, that is,

(18)

The interference function can be obtained in terms
of and as .

IV. NEW FALVQ ALGORITHMS

The construction methodology presented above allows the
designer to have a more direct impact on the competition
between the prototypes during the learning process. This
methodology is used in this section for extending the existing
FALVQ 1, FALVQ 2, and FALVQ 3 families of algorithms,
which are summarized in Table I [13], [15].

A. Extending the FALVQ 1 Family of Algorithms

The FALVQ 1 family of algorithms can be extended by
selecting an interference function of the form

(19)

where and . The interference function
defined in (19) decreases monotonically from its maximum
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value to . For a fixed
approaches one as decreases to zero. Moreover,
decreases and approaches zero asincreases and approaches
infinity. If the value of is fixed, the value of decreases
as increases.

According to the proposed algorithm construction method,
the membership function corresponding to can be ob-
tained as

(20)

The constant can be evaluated using the condition (18),
which results in . Thus, the membership function
corresponding to (19) is

(21)

According to the binomial identity,

(22)

Thus, it can be verified that the membership function defined
in (21) is of the form . For defined in (19),
the interference function for the nonwinning prototypes is

(23)

The original FALVQ 1 family of algorithms can be obtained
from the interference function defined in (19) with .

B. Extending the FALVQ 2 Family of Algorithms

The proposed algorithm construction method can be used
for extending the FALVQ 2 family of algorithms. This can be
accomplished by using the integral

(24)

where and . This latter identity indicates that by
selecting an interference function of the form

(25)

the corresponding membership function becomes

(26)

The resulting membership function is of the form
. Moreover, attains the value of zero as ap-

proaches zero. The interference function can be obtained
by combining (25) and (26) as

(27)

If , the interference function defined in (25) leads
to the original FALVQ 2 family of algorithms.

The interference function (25) decreases from its maximum
value to . Nevertheless,
is not necessarily a monotonically decreasing function in the
interval , as indicated by the proposition which follows.

Proposition 1: The interference function defined in
(25) is monotonically decreasing in the interval if

(28)

The corresponding membership function (26) is monotonically
increasing in the interval if .

Proof: The proof of this proposition is presented in
Appendix A.

C. Extending the FALVQ 3 Family of Algorithms

The FALVQ 3 family of algorithms can be extended us-
ing the proposed construction method and some well-known
integrals. For and ,

(29)

According to (29), the selection of an interference function of
the form

(30)

results in membership functions of the form

(31)

The corresponding interference function is given by

(32)

The family of FALVQ 3 algorithms can be interpreted as
the special case of the above formulation which corresponds
to . For is a linear and monotonically
decreasing function of over the interval . If

is a nonlinear function of . Moreover, is not
guaranteed to be a monotonically decreasing function ofover
the interval . The proposition which follows determines
the combinations of and which lead to interference
functions that are monotonically decreasing over the
interval .

Proposition 2: The interference function defined in
(30) is monotonically decreasing in the interval if

(33)

The corresponding membership function (31) is monotonically
increasing in the interval if .

Proof: The proof of this proposition is presented in
Appendix B.

The extended FALVQ 1, FALVQ 2, and FALVQ 3 families
of algorithms can easily be implemented according to the
scheme presented in Section II. If is the input vector,
the winning prototype can be updated by (6) with
evaluated in terms of the interference function as

. The nonwinning prototypes
can be updated by (8) with evaluated in terms of the
interference function as .
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V. COMPETITION MEASURES

This section establishes a direct relationship between the
properties of the membership functions used and the perfor-
mance of the resulting FALVQ algorithms. This is accom-
plished by introducing two competition measures, which relate
the form of the membership functions with the competition
between the winning and nonwinning prototypes during the
learning process.

According to Section II, the nonwinning prototypes are not
updated to match the input vector if or

. It can be observed that

if
if .

(34)

For any other membership function selected according to the
conditions presented in Section II

(35)

Thus, the area can be used as a measure
of the competition between the winning and nonwinning
prototypes. The development of competitive LVQ algorithms
requires that . Moreover, the nonwinning proto-
types become less competitive as approaches or . This
measure can be used to evaluate the membership functions that
resulted in the extended FALVQ 1, FALVQ 2, and FALVQ 3
families of algorithms by investigating the effect of the param-
eters involved in their definition on the competition between
the winning and nonwinning prototypes during the learning
process.

The extended FALVQ 1 family of algorithms is generated
by membership functions of the form (21). If , then

(36)

It can be verified that approaches as approaches
zero. If approaches infinity, then approaches
zero. This is a clear indication that the competition between
the winning and nonwinning prototypes during the learning
process diminishes as approaches zero or infinity. If ,
then

(37)

Fig. 2(a) plots the measure as a function of for
different values of . According to Fig. 2(a), attains
values very close to for small values of regardless of
the value of . In this case, the nonwinning prototypes are
not updated to match the input vectors. Asincreases, the
value of decreases very slowly to zero, the other
extreme value of this competition measure which indicates
that the nonwinning prototypes are not updated to match the
input vector.

(a)

(b)

(c)

Fig. 2. (a) Au(n; �) as a function of� for different values ofn; (b)
Au(n; �) as a function of� for different values ofn; (c) Au(n; ) as a
function of  for different values ofn.

The extended FALVQ 2 family of algorithms is generated
by membership functions of the form (26). In this case

(38)

If , (38) gives

(39)

It can be verified that approaches as approaches
zero. If approaches infinity, then approaches zero.
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The FALVQ 2 algorithms corresponding to become
increasingly competitive as moves away from the extremes
zero and infinity. Fig. 2(b) plots as a function of

for different values of . According to Fig. 2(b),
decreases quickly to values close to zero for all values ofas
the value of increases. Thus, the competition between the
winning and nonwinning prototypes diminishes quickly as the
value of exceeds a certain threshold.

The extended FALVQ 3 family of algorithms is generated
by membership functions of the form (31). In this case,

(40)

If , then (40) gives

(41)

Clearly, attains its maximum value for ,
which corresponds to no competition, and decreases linearly
from to as spans the interval . Fig. 2(c) plots

as a function of for different values of .
For decreases linearly from to . However,

decreases much faster for higher values of. Thus,
even for values of close to zero, higher values of allow
the nonwinning prototypes to be updated to match the input
vector.

The area alone may not be sufficient to establish a
relationship between the form of the membership function and
the competition between the winning and nonwinning proto-
types during the learning process. This can be accomplished by
considering the area in conjunction with the “centroid” or
”center of gravity” of the membership function . Assuming
that , the centroid of over the
interval is defined as

(42)

The centroid (42) is a useful source of information regarding
the shape of and, thus, the bias of the resulting FALVQ
algorithm toward the winning prototype. In the extreme case
where . If is an admissible membership
function, then . Since the selection of implies
that the nonwinning prototypes are not updated to match
the input vector, the development of competitive FALVQ
algorithms requires a membership function that corresponds to
a centroid value lower than. Nevertheless, the nonwinning
prototypes become increasingly competitive as the centroid
decreases below. If the value of is sufficiently close to
zero, the competition between the winning and nonwinning
prototypes diminishes.

The centroid of the membership function that resulted in
the FALVQ 1 family of algorithms can be obtained from (42)

with as

(43)

If approaches zero, then approaches its maximum
value, i.e., . This is consistent with the
fact that if approaches zero, then
approaches . It can also be verified that

. Fig. 3(a) plots as a function of for
different values of . As the value of increases from zero to
infinity, decreases asymptotically from its maximum
value of to , its lower bound. According to Fig. 3(a),

remains almost constant as increases from zero
to infinity and is practically not affected by the value of.
Thus, with the exemption of values of sufficiently close to
zero, the area is a more reliable competition
measure for the extended FALVQ 1 family of algorithms.

The centroid of the membership function that resulted in
the FALVQ 2 family of algorithms can be obtained from (42)
with as

(44)

If approaches zero, then approaches its maximum
value, i.e., . It can also be verified that

. Fig. 3(b) plots as a
function of for different values of . Clearly, the centroid

can take positive values significantly lower than
for large values of . Such values of indicate that
there is practically no competition between the prototypes
during the learning process. In conjunction with the area

, can be used to select the range
of values of that guarantee the competition between the
winning and nonwinning prototypes.

The centroid of the membership function that resulted in
the FALVQ 3 family of algorithms can be obtained from (42)
with as

(45)

Clearly, decreases from to as the value of
increases from zero to one. Fig. 3(c) plots as
a function of for different values of . In this case,
the competition measure decreases slowly to values
considerably higher than zero. Since takes values in
a neighborhood of as spans the interval ,
is not a particularly informative competition measure in this
case. Thus, the area can be used for selecting
the values of that result in competitive FALVQ 3 algorithms.

VI. EXPERIMENTAL RESULTS

A. Clustering the IRIS Data

The proposed algorithms were tested using Anderson’s IRIS
data set [1], which has extensively been used for evaluating
the performance of pattern clustering algorithms. This data set
contains 150 feature vectors of dimension 4 which belong to
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(a)

(b)

(c)

Fig. 3. (a) Cu(n; �) as a function of� for different values ofn; (b)
Cu(n; �) as a function of� for different values ofn; (c) Cu(n; ) as a
function of  for different values ofn.

three physical classes representing different IRIS subspecies.
Each class contains 50 feature vectors. One of the three
classes is well separated from the other two, which are not
easily separable due to the overlapping of their vectors. The
performance of the algorithms is evaluated by counting the
number of crisp clustering errors, i.e., the number of feature
vectors that are assigned to a wrong physical cluster by
terminal nearest prototype partitions of the data. Unsupervised
clustering of the IRIS data typically results in 12–17 clustering
errors [20].

Tables II–IV show the number of feature vectors from the
IRIS data set assigned to a wrong cluster by algorithms from
the extended FALVQ 1, FALVQ 2, and FALVQ 3 families,
respectively. In all these experiments the total number of

TABLE II
NUMBER OF FEATURE VECTORS FROM THEIRIS DATA SET

ASSIGNED TO A WRONG CLUSTER BY ALGORITHMS FROM THE

EXTENDED FALVQ 1 FAMILY WITH N = 100 AND �0 = 0:5

TABLE III
NUMBER OF FEATURE VECTORS FROM THEIRIS DATA SET

ASSIGNED TO A WRONG CLUSTER BY ALGORITHMS FROM THE

EXTENDED FALVQ 2 FAMILY WITH N = 100 AND �0 = 0:5

TABLE IV
NUMBER OF FEATURE VECTORS FROM THEIRIS DATA SET

ASSIGNED TO A WRONG CLUSTER BY ALGORITHMS FROM THE

EXTENDED FALVQ 3 FAMILY WITH N = 100 AND �0 = 0:5

iterations was while the initial value of the learning
rate was . The prototypes were initialized with all
zero values. According to Table II, the extended FALVQ 1
algorithms resulted in a large number of clustering errors
for very small values of . Note that when 100 or 50
clustering errors are observed, the algorithm assigns all feature
vectors to one or two clusters, respectively. The number of
clustering errors increased slightly for values of above
ten. This experimental outcome is consistent with the fact
that the nonwinning prototypes are not updated to match
the input vector for very small or very large values of.
Nevertheless, there is a very broad range of values of
for which the extended FALVQ 1 algorithms resulted in an
acceptable number of clustering errors. The performance of
the extended FALVQ 1 algorithms tested on this data set was
not significantly affected by the value of. This experimental
outcome is consistent with the behavior of the competition
measures and for different values of and

. According to Table III, the algorithms from the extended
FALVQ 2 family resulted in a large number of clustering
errors for very small values of. Moreover, the performance
of these algorithms deteriorated as the value ofincreased
above two. In this case, had a rather significant effect on
the performance of the algorithms, especially for high values
of . The performance of the algorithms from the extended
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FALVQ 2 family is consistent with the behavior of the
corresponding competition measures and .
Table IV indicates that the performance of the algorithms
from the extended FALVQ 3 family deteriorated for values
of sufficiently close to zero. Nevertheless, there was no
significant change in the number of feature vectors assigned
to a wrong cluster as approached one. The performance of
these algorithms was affected by the value ofonly for small
values of . For example, in the case where the
algorithm resulted in an acceptable number of clustering errors
for and . This is consistent with the behavior of
the competition measure for different values of
and .

B. Segmentation of Magnetic Resonance Images

The clinical utility of magnetic resonance(MR) imaging
rests on the contrasting image intensities obtained for different
tissue types, both normal and abnormal. For a given MR
image pulse sequence, image intensities will depend on local
values of the following relaxation parameters: the spin-lattice
relaxation time (T1), the spin-spin relaxation time (T2), and
the spin density (SD). Conventional diagnosis based on MR
imaging requires the simultaneous visual inspection of up
to three or more different weighted MR images. Given the
redundancy present in MR images, their interpretation is based
on intelligent abstraction. In this context, abstraction means
the ability to concentrate on some key details of the image
such as unusually high intensity levels that may correspond
to abnormalities.

In the context of MR imaging, segmentation usually implies
the creation of a single image with much fewer intensity
levels than the original images. The resulting segmented image
is frequently artificially colored in order to facilitate the
diagnostic process. In some cases, the objective of the segmen-
tation process is the characterization of brain tissue reflected
in different positions of the MR images. The existence of
reliable computer-based MR image segmentation techniques
can enhance the ability of radiologists to detect, diagnose,
and monitor diseased pathology. MR image segmentation
techniques are often evaluated in terms of their ability to
1) differentiate between cerebro-spinal fluid (CSF), white
matter, and gray matter, and 2) differentiate between normal
tissues and abnormalities. Another important criterion for
evaluating MR image segmentation techniques is their ability
to quantitatively measure changes in brain tissue volumes
caused by degenerative brain diseases.

The use of fuzzy clustering procedures in MR image seg-
mentation is justified by the fact that there are no hard
boundaries in MR images of the brain due to tissue mixing [5].
Hall et al. [5] compared MR image segmentation techniques
based on supervised multilayered neural networks [17], the
fuzzy -means algorithm [2], and approximations of the fuzzy
-means algorithm that were developed to reduce its com-

putational requirements. Although the supervised training of
multilayered neural networks was computationally demanding,
supervised and unsupervised segmentation techniques pro-
vided broadly similar results. Inconsistency of rating among
experts was observed in a complex segmentation problem with

tumor/edema or CSF boundary, where tissues have similar MR
relaxation behavior [5].

The segmentation of MR images is conventionally formu-
lated as the problem of clustering a set of feature vectors.
Each feature vector contains as elements the T1, T2, and
SD parameters. A clustering procedure is used to assign
the feature vectors to a relatively small number of clusters,
each represented by a prototype. Following the clustering
process, the segmented image is obtained by representing each
feature vector by the corresponding prototype. As a result, the
segmented image contains a number of intensity levels equal
to the number of clusters, which is smaller than the number of
intensity levels in the original image. The utility of segmented
MR images in the medical diagnostic process depends on the
combination of two often conflicting requirements, that is,
the elimination of the redundant information present in the
original MR images and the preservation of the important
details in the resulting segmented images. The discrimination
between redundant and useful information is based on the
number of intensity levels present in the segmented images,
or, equivalently, the number of clusters created during the
clustering process. The selection of a small number of clusters
can result in the loss of detail necessary for the diagnostic
process, while the selection of a large number of intensity
levels can undermine the effectiveness of the segmentation
process by producing segmented images with a large volume
of redundant information.

Fig. 4(a)–(c) shows the T1-weighted, T2-weighted, and spin
density MR images of an individual with meningioma. Menin-
giomas are the most common form of intracranial tumors.
In this case, the tumor was located in the right frontal lobe
(upper-left quarter of the MR images) and appears bright on
the T2-weighted image and dark on the T1-weighted image.
The tumor appears very bright and isolated from surrounding
tissue in Fig. 4(d), which shows the T1-weighted MR image
recorded after the patient was given Gadolinium. There is also
a large amount of edema surrounding the tumor, which appears
very bright on the T2-weighted image shown in Fig. 4(b).

The MR image shown in Fig. 4 was segmented using
the (unlabeled data) LVQ algorithm and algorithms from
the FALVQ 1, FALVQ 2, and FALVQ 3 families. In these
experiments, the feature vectors were formed using the pixel
values of the T1-weighted, T2-weighted, and spin density
images shown in Fig. 4(a)–(c), respectively. Fig. 4(d), which
shows the T1-weighted image with Gadolinium, was used
to evaluate the segmented images since the tumor appears
very bright and is well separated from surrounding tissue.
In all these experiments, , that is, the segmented
images contained 8 different intensity levels which were
artificially colored. Fig. 5(a) and (b) shows the segmented
images produced by the LVQ algorithm applied with
and initial values of the learning rate and ,
respectively. It was found that the algorithm achieves its best
performance for initial values of the learning rate in this
range. Clearly, the LVQ algorithm succeeds in identifying the
edema but fails to separate the tumor from surrounding tissue.
Fig. 6(a) and (b) shows the segmented images produced by
the algorithms from the extended FALVQ 1 family for
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(a) (b)

(c) (d)

Fig. 4. Magnetic resonance (MR) image of the brain of an individual suffering from meningioma: (a) T1-weighted image, (b) T2-weighted image, (c)
spin density image, and (d) T1-weighted image after the patient was given Gadolinium.

with and , respectively. Fig. 7(a) and (b) shows
the segmented images produced by the algorithms from the
extended FALVQ 2 family for with and ,
respectively. Fig. 8(a) and 8(b) shows the segmented images
produced by the algorithms from the extended FALVQ 3
family for with and , respectively.
In all these experiments, the initial value of the learning
rate was and the total number of iterations was

. Clearly, the tumor and the surrounding edema are
clearly identified by the algorithm from the extended FALVQ 1
family with and (competition measures:

), the algorithm from the extended
FALVQ 2 family with and (competition
measures: ), and the algorithm from
the extended FALVQ 3 family with and
(competition measures: ). However, the
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(a) (b)

Fig. 5. Segmented MR images by the (unlabeled data) LVQ algorithm withN = 100and (a)�0 = 0:1, (b) �0 = 0:9.

tumor was not distinguished from surrounding tissue by the
algorithm from the extended FALVQ 1 family with
and (competition measures:

), the algorithm from the extended FALVQ 2 family
with and (competition measures:

), and the algorithm from the extended
FALVQ 3 family with and (competition
measures: ). As indicated by the
values of the corresponding competition measures, for these
values of and the nonwinning prototypes are not
significantly updated to match the input vector of the network.
In fact, for these values of and the algorithms from
the extended FALVQ 1, FALVQ 2, and FALVQ 3 families
resemble the behavior of Kohonen’s (unlabeled data) LVQ
algorithm.

VII. CONCLUSIONS

This paper presented a new methodology for constructing
FALVQ algorithms, which exploits the fact that the competi-
tion between the winning and nonwinning prototypes during
the learning process is regulated by the interference func-
tions. According to this methodology, the development of
FALVQ algorithms begins with the selection of the inter-
ference function instead of the membership function. The
proposed methodology allows for a more direct impact on
the competition between the prototypes during the learning
process and can be the basis for extending the existing
families of FALVQ algorithms. This paper also introduced
two quantitative measures that establish a relationship be-
tween the formulation that led to FALVQ algorithms and
the competition between the prototypes during the learning
process. The proposed competition measures can be used

for selecting the parameters of FALVQ algorithms. Various
algorithms from the extended FALVQ 1, FALVQ 2, and
FALVQ 3 families were experimentally tested on the IRIS
data set. In addition, FALVQ algorithms were used to perform
segmentation of MR images of the brain. These experiments
verified the validity of the proposed competition measures by
testing the performance of FALVQ algorithms in the limit
where they resemble the (unlabeled data) LVQ algorithm.
These experiments also illustrated the efficiency of FALVQ
algorithms used to perform the nontrivial vector quantization
task involved in this application.

APPENDIX A
PROOF OF PROPOSITION 1

The extrema of the interference function (25) satisfy the
condition

(A1)

Since , the values of which correspond to extrema of
can be found by solving the equation

(A2)

where . For , the only root of (A2) is . For
, the only positive root of (A2) is .

If , the roots of (A2) can be determined numerically.
Nevertheless, it is shown here that, in the case were ,
(A2) has only one positive root . Moreover,

approaches asymptotically from the right as the value of
increases.
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(a) (b)

Fig. 6. Segmented MR images by algorithms from the extended FALVQ 1 family withn = 1 and (a)� = 1, (b) � = 0:1 (N = 100; �0 = 0:001).

(a) (b)

Fig. 7. Segmented MR images by algorithms from the extended FALVQ 2 family withn = 1 and (a)� = 1, (b) � = 0:1 (N = 100; �0 = 0:001).

Consider the function

(A3)

Clearly, . Thus, is not a root of (A2).
If , then . Since

. Thus, there is no root of (A2) in the interval .

Consider that . Since , then

(A4)
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(a) (b)

Fig. 8. Segmented MR images by algorithms from the extended FALVQ 3 family withn = 1 and (a) = 1, (b)  = 0:1 (N = 100; �0 = 0:001).

Thus, there is no root of (A2) in the interval . For
, . For ,

(A5)

Since changes sign as takes values in the interval
, there exists at least one zero-crossing in this interval.

It can easily be verified that the equation

(A6)

has no roots in the interval . This implies that
has no extrema in this interval. Thus, the zero-crossing

is unique. As the value of increases, while
increases exponentially. Thus,

the zero-crossing approaches asymptoticallyfrom the right.
According to the above analysis, the positive root of

is determined by , where .
Also, approaches zero as increases. Therefore,
has a minimum at . In conclusion, is
a monotonically decreasing function in the interval if

or, equivalently, if . Since ,
this condition is satisfied if .

Since , it can easily be verified that
possesses a maximum at , which is the root of

. Thus, is a monotonically increasing
function in the interval if or, equivalently,

if .

APPENDIX B
PROOF OF PROPOSITION 2

The extrema of the interference function defined in
(30) satisfy . Since

(B1)

the extrema of occur at and . The
second-order derivative of is

(B2)

Clearly, . In addition, for ,

(B3)

Thus, possesses a minimum at . As a result,
the interference function is a monotonically decreasing
function of over the interval if or,
equivalently, if

(B4)

For decreases linearly for any . Thus, the
condition (B4) is valid for all .

The extrema of occur at , that
is, at and . It can easily be verified that

. In addition, for ,

(B5)
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Thus, the membership function possesses a maximum at
. In conclusion, is a monotonically increasing

function in the interval if or, equivalently, if

(B6)
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