當代系統科學思想

# 複雜 Complexity

產業研發碩士專班課程

陳慶瀚 機器智慧與自動化技術(MIAT)實驗室 義守大學電機系 pierre@isu.edu.tw 2005年10月11日



#### 本週主題

- 1. Complex system
- 2. Characteristics of complex system
- 3. Complexity and Organization



# 複雜系統



# 簡單系統(simple system)的例子

- •An oscillator
- •A pendulum
- •A wheel
- •An orbiting planet



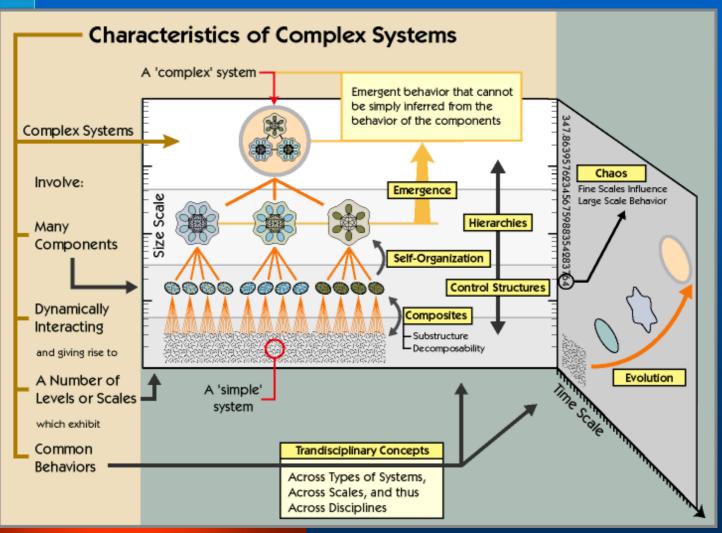
# 複雜系統(complex system)的例子

- •Governments
- Families
- •The human body—physiological perspective
- •A person—psychosocial perspective
- •The brain
- •The ecosystem of the world
- •Subworld ecosystems: desert, rain forest, ocean
- Weather
- A corporation



# 如何觀察一個複雜系統

- Elements (and their number)
- Interactions (and their strength)
- Formation/Operation
- Diversity/Variability
- Environment
- Activity(and its objective)




#### 如何描述一個複雜系統

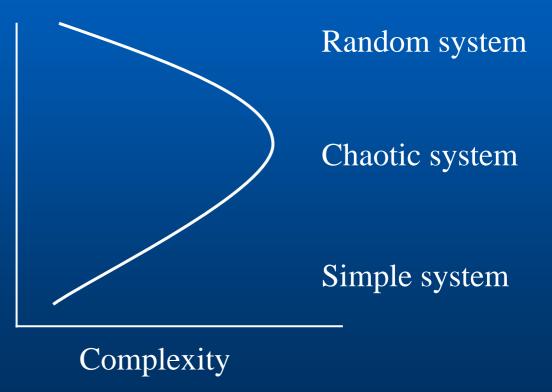
- 1. Space: What are the characteristics of the structure of complex systems?
- 2. Time: How long do dynamical processes take in complex systems?
- 3. Self-organization and/versus organization by design: How do complex systems come into existence? What are the dynamical processes that can give rise to complex systems?
- 4. Complexity: What is complexity? Complex systems have varying degrees of complexity.



### 複雜系統圖示






## 複雜系統與複雜度

Stochastic

Strange Attractor

Fixed-point Attractor

Steady-state





# 複雜系統實例

| System                              | Element                    | Interaction                                               | Formation                | Activity                                    |
|-------------------------------------|----------------------------|-----------------------------------------------------------|--------------------------|---------------------------------------------|
| Proteins                            | Amino Acids                | Bonds                                                     | Protein folding          | Enzymatic<br>activity                       |
| Nervous system<br>Neural networks   | Neurons                    | Synapses                                                  | Learning                 | Behavior<br>Thought                         |
| Physiology                          | Cells                      | Chemical<br>messengers<br>Physical support                | Developmental<br>biology | Movement<br>Physiological<br>functions      |
| Life                                | Organisms                  | Reproduction<br>Competition<br>Predation<br>Communication | Evolution                | Survival Reproduction Consumption Excretion |
| Human<br>economies<br>and societies | Human Beings<br>Technology | Communication<br>Confrontation<br>Cooperation             | Social evolution         | Same as Life?<br>Exploration?               |



### Characteristics of complex system



#### Emergence

#### 突現;自發

Emergence is the process of deriving some new and coherent structures, patterns and properties in a complex system.

Emergent phenomena occur due to the local interactions between the elements of the system over time.

Emergent phenomena are observable at a macro-level, even though they are generated by micro-level elements.



# Complexity

- Kolmogorov-Chaitin Complexity
- Computational Complexity
- Stochastic Complexity
- Statistical Complexity
- Structural Complexity

•



### **Deterministic Complexity**

The *Kolmogorov-Chaitin* complexity of an object *x* is the length, in bits, of the smallest program (in bits) that when run on a *Universal Turing Machine* outputs *x* and then halts.



# Measures of Complexity

測量一個系統的資訊量:

$$I = \log_2(\Omega)$$

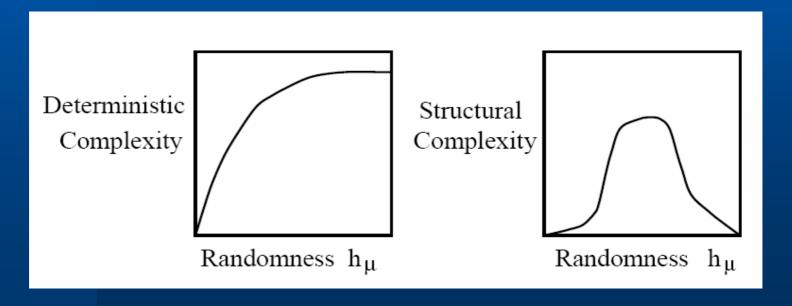
Ω式系統狀態的數目



#### Measures of Randomness

The entropy rate  $h_{\mu}$  of a symbolic sequence measures the unpredictability (in bits per symbol) of the sequence.




## Kolmogorov complexity

- •The Kolmogorov complexity K(x) is maximized for random strings.
- •The average growth rate of K(x) is equal to the entropy rate  $h_{\mu}$



#### Complexity Distinct from Randomness

The entropy rate  $h_{\mu}$  and the Kolmogorov Complexity K(x) do not measure pattern or structure or correlation or organization.





# 複雜系統特徵

- 1. 複雜系統由三個以上的元素(constituents)所構成
- 2. 系統的元素彼此交互關聯(inter-dependent)
- 3. 具有不同展開比例(spanning scale)的結構
- 4. 混沌與非混沌交互作用
- 5. 合作與競爭交互作用



## Complexity and Organization



## 複雜系統方法論策略

- 1. Don't take it apart.
- 2. Don't assume smoothness
- 3. Don't assume that only a few parameters are important.



# 複雜度管理(Frizelle, 1998)

|    | Structural complexity              | Operational complexity           |
|----|------------------------------------|----------------------------------|
| 對策 | Simplification                     | Management & control             |
| 預防 | Better design                      | Improved reliability             |
| 治療 | Process analysis and restructuring | Enhanced planning and scheduling |



# 複雜系統組織的管理課題

- People Are Agents
- The Importance of Teams
- •A New Role for Leaders
- Learning Organizations
- Communication Is Vital
- •A Few Simple Rules
- Diversity Enhances Creativity



#### 結語

生命恆朝向複雜度增加的方向演化。