M7 - RS R

L
2004-12-05

T BB B RS R R 1 e |
J. Serra, Image Analysis and Mathematical Morphology. London: Academic, 1982.

B R Ry i et

S. R. Sternberg, “Grayscale morphology”, Comput. Vision, Graphics, Image Processing, vol. 35,
pp.333-355, 1986.

R RIS

Henk J.A.M. Heijmans, “Theoretical aspects of gray-level morphology”,IEEE Trans. On Pattern
Analysis and Machine Intelligence, vol.13, no.6, 1991.

L RS T E AT

4R
PR T SRR B ARG A -

7 W (dilation) Da(*) % K
D (A By = [ﬂ?‘i{u[m—;', n—k1+ bl i.k]}
7 EHefi(erosion) Eg(*) 5 Fl:

E;(A,B)= [ﬂilgls{n[na+j',n+ k1—blj.k1}

= e RE RS

#17#/(Opening) —
O.,(4.B)=D,(E,(4,B).E)

/%ﬁ,‘(CIosing) -
C.(4,B)=-0,(-4,~B)

RE I B PR R BRSSP ETPIHE I <0 e - 4B P ISPREITERY structuring
elements - b[j,k] = b[-j,-K] © & ﬁﬁf“‘gfj‘[ﬁﬁ;ﬂ S If 7] B = constant = 0 » Il #H

T B

7 i 9=(dilation):

Dy(A,B)= max {alm~ j.n—k1} = max(a)

7 (2 fili(erosion):

E.(A,B)= [r_r!_ilgs{a[m— fon—kl}= main{A}

i #ifF(Opening) —

O_(A.B)= mélx(main(ﬁ}}

i ﬁ (Closing) —

C.(A.B)= mﬁin(mfux{ﬂ})

TIPS R HRIERSE BN £% maximunm filter 1 minimum filter

R BB RS T 1D 9T -

0 Bilation 2% 1 Clazing
« 20 "Original / w 2001 /
5 1301 ¥ om0
é 100 _i 100 -
50 Frocion 50 o
0 . : - | 0 : ““ t |
0 2 :Ilhﬂlﬁ. 208 0 =0 Iﬂﬂm;ﬁ. 200

A BT RS

Efzsp 1{[“(Morphological smoothing)

MorphSmooth(A,B) = C,(0,(A.B),B)

= min{max{max(min(2))))

E|f&2* k% (Morphological gradient)

AR AR PR S A I[E'EIJFA’[g{E{ % (magnitude) {1 [fi|(orientation) i ffi| &1 - 'J'FE??@J@@[’F‘[
W47 917% (gradient magnitude):

Gradient(A,B) = %{DG{A,B)— E.(A,B))

= %{_ max(&)—min(3)]

E[fES® Laplacian

l~--.?||'—L MI'—‘ bt | =

Laplacian(&,B) (D.(B.B)-2)-(A-E.(A.B)))
=~ (D.(A.B)+ E,(A.B)—2A)

= —(max(A)+min(A)—2A)

e B B B i Y

Dilation Erosion Smoothing Gradient LapIaC|an

FIRE L~ T e Rt femme 1 36x136.rawky v £ Fri 2 AN ¢
void grayDllation(UCZD &iml, uc2D &im2)

void grayErosion(uc2D &iml, uc2D &im2)
void grayClosing(uc2D &iml, uc2D &im2)
void grayOpenning(uc2D &iml, uc2D &im2)
void graySmoothing(uc2D &iml, uc2D &im2)

void grayGradient(uc2D &iml, uc2D &im2)
void graylLaplacian(uc2D &iml, uc2D &im2)
R BT g i g 3
int seX[NumPtSet]={0,-1,0,1,0},
seY[NumPtSet]={-1,0,0,0,1},
seZ[NumPtSet]={0,0,0,0,0}; //gray level of SE, 0 by default

2. Top-hat transform
ST B SRR > Meyer HiT top-hat transform fO% 22050 (g
RS T -

TopHat(4,B)=4 - (ACB)= 4 - mﬂx[.min[h })
STt LR =

TopHat{4,B)=(4®B)— 4 = min[:mﬂx{:é:])—

¥ - Shaded Imags R# r Top-iHat Transform K0 r Top-Hat Transform

oy GRS L o Wb | Dadalfacts
!::: ! :: ! ::
g £ H ®1 H wi

.n » ;i e " ‘l L
U P pP e kgl LA

&M flif*(Thresholding)

B FEEORIR — (B RS 68 0 B R 0
A m,n]= %[:max{ A)+min(A))

i Tl BFEI3 (contrast enhancement)
S H B A s AR o 1 ESB E

LocalContrast(2, B) = max(&) — min{ &)

i I 5780 Sy e S~ F A

B —min{A)
max(d)— min(&)

o[m) = scale

‘3“72‘~%ﬁﬁfljjﬁpﬁiﬁﬂ%ﬁﬁmmHSOOxsoofaWEéﬁﬁwFﬁﬁyﬂiigmﬁ%i1
void morphologicalThresholding(uc2D &iml, uc2D &iIm2)
void morphologicalContrastEnhance(uc2D &iml, uc2D &iIm2)

3. ST

73 SRR 5 55 I R LT = YRR R O T S U R
r%’]J(segmentation) > Meyer 141990 HlMorphological segmentationElfJ’FlﬁF’ifﬁ?ﬁElﬂliﬁiﬁ
o PUE ETEFEL A 0 VincentAISoi Hesht 19915 L HGHRETFIFAS £
F. Meyer, S. Beucher, “Morphological segmentation”, Journal of Visual Communication
and Image Representation, vol. 1, no.1, pp.21-46. (1990)
Luc Vincent and Pierre Soille, “Watersheds in digital spaces: an efficient algorithm based
on immersion simulations,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, VOL. 13, NO. 6, pp. 583-598, June 1991.

Here is a brief description of the watershed algorithm on a gradient image. The gradient image is of
the same size of the original one with its pixels being gradients represented by integer grey-level
values. A gradient image can be considered as a topographic surface as follow:

A minimum refers to a connected component in which the pixels are with the same grey level value
and the value of this component is strictly lower than the values of its neighboring pixels.

Imagine that we pierce each minimum of the topographic surface and that we plunge this surface
into a lake at a constant vertical speed. The water entering through the holes floods the surface.
During the flooding, two or more floods coming from different minima may merge. In order to
avoid this, dams are built up at potential merging points of the surface. At the end, only dams
emerge. These dams are watersheds.

The original serial watershed transformation by ordered queue starts by detecting and labelling the

initial seeds (minima). Ordered region growing is then performed starting from these minima.
Non-labeled pixels are connected to different components in an increasing order of gray-levels.
Inside the unlabelled flat areas, called plateaus of non-minima, components progress synchronously
such that they incorporate equal extents within the plateau. The recursive label propagation
(flooding) is performed using an ordered queue, which is an array of H FIFO queues, with one
queue for each of the H gray-levels in the image. For the case of grayscale image in raw format, one
requires 256 FIFOs of size equal to the image size, since gray-scale information is represented using
one byte per pixel.

i
(1) R

For implementing the ordered queue algorithm, the size of all the FIFOs required should be equal to
the image size. For 256 gray-levels, this amounts to utilizing 256 such FIFOs. However, a pixel
having an intensity, say h, and having a downward brim to its plateau, is flooded earlier than a pixel
having an intensity greater than h. This implies that unless all the pixels having intensity h have
been flooded, flooding of pixels of intensity h+1 will not take place. Therefore, we conclude that if
we take the histogram first and then perform the flooding step, we will need only one FIFO of size
equal to the image size, and not 256 FIFOs as required in the original algorithm. However, this
implementation requires proper addressing of the pixels belonging to each gray-level. For software
implementation, a simple new operator will do the job of dynamically allocating portions of the
FIFO to respective frequencies corresponding to the different gray-levels. For the hardware
implementation, we require a small amount of additional memory to keep track of the FIFO’s
starting and ending locations, in order to locate pixels of particular gray-level.

This algorithm assumes the availability of functions to which if a memory location is passed, it
gives the number and addressesNG(p) (x[K] in C code) of neighboring pixels. This assumption is
made for the sake of simplicity of explanation and is not made in the architectural implementation
of the algorithm. Figure 1 shows the overall initializations required for the algorithm. N is the
number of gray-levels.

#define N 256 //256 gray level

#define S 65536 // S denotes the number of pixels in the 256x256 image
#define T 65535 // T is equal to S-1

declarations: input[S], label[S],sort[S],
output[S],fifoq[S],outputlabel[S],*Fifo[256];

(2)Sorting

Let us assume that we already have sorted the image pixels and have the histogram in the array
hist[i], where | denotes the particular gray-level. Knowing the frequency distribution, we can
allocate the memory for the respective gray-levels dynamically. The code segment shows the
dynamic allocation of memory:

for(i=0;i<=255;i++)
{
fifo[i] = new int(hist[i]);

(3)Locating minima

This requires two scannings of the whole image. In our case, we do it row wise. In the first scan, we
detect the pixels which are not regional minima, i.e., the pixels whose neighborhoods have at least
one pixel of gray-scale value less than itself. The second scan checks to find out the single minima
pixels, minima plateau and non-minima plateau. In the same scan, output image of labels (output
label) is also given unique labels for minima pixels to reduce the number of memory fetches later
on. The algorithm to detect and label the minima is given:

- First Scan the entire image

For every pixel p” eNg(p)
such that input[p]>input[p’]
label p is (not a minimum);
break;

- Second Scan the entire image
if p is not (nhot a minimum) then

{
For every pixel p” eNg(p)
{
if input[p] = input[p’] then
{
if p” is (not a minimum) then
{
Nonmimima plateau detected;
label p is (not a minimum)
}
}
else
{
plateau detected;
label p is (nhot a minimum)
}

if both nonminima plateau and minima plateau remains undetected then

label p is minima;
output[i] = outlabel;
outlabel++

if nonminima plateau detected, then
label all the pixels of this plateau as (not a minimum)
if plateau detected then

find whether this plateau is a minima plateau or a nonminima plateau;
put all the pixels in fifoq;
{
if minima plateau, then
label all the pixels of this plateau to minima;
{
for every pixel q of this plateau
output[q] = outlabel; outlabel++;

(4) Initialization

In this step, we need to scan the array name label, which indicates whether a particular pixel is a
minima or a nonminima. Since we use a single FIFO with locations equal to the image size, we
need two arrays, mincount[256] and compcount[256] to take care of the starting and ending
locations of a particular FIFO. Hence, in the initialization step we scan the label array and get the
frequency distribution of minima’s. Following code shows the code for initialization of FIFO

memory with minima addresses.
Ffor(i=0;i<=T;i++)

{
if(label[i] == 2)
{
*(Fifo[(input[i])] + mincount[(input[iD]) = i;
mincount[input[i]] = mincount[input[i]] + 1;
}
}
(5)Flooding

In this phase of the algorithm, we start from the lowest gray-level minima, check to see if output
label is not enabled (outputlabel = 1 indicates that the particular pixel has already been visited and
labeled), get the neighboring pixels and give them the same label as one given to that particular
pixel. Further, all the neighboring pixels are put in a queue. We then check to see if the outputlabels
are enabled for the neighboring pixels and if they are not labeled, their outputlabels are enabled
after putting them all in the queues of their respective FIFOs. This process is repeated until the

entire image is covered. The flooding algorithm is shown:

for(i=0;i<=255;i++)//1

{
if (mincount[i] == 0);

else //2

{
for(J=0;j<hist[i];j++)//3
{
if((outputlabel[*(Fifo[i] + compcount[i])]) == 0)
foutputlabel[*(fifo[i] + compcount[i])] = 1;
}

tempcall = *(Ffifo[i] + compcount[i]);
call = neighbor(x,tempcall);
compcount[i] = compcount[i] + 1;
for(k=0;k<call;k++)//4

{
if((outputlabel [x[k]]==0) && (label[x[k]] '= 2)) //5
{
output[x[k]] = output[*(Ffifo[i] + compcount[i] -1)];
outputlabel [x[k]] = 1;
if (Cinput[x[k]]==i) && (label[x[k]] == 2));
else
{
*(Fifo[input[x[k]1]1 + mincount[input[x[k]11) = x[Kk1;
mincount[input[xX[k]11]1 = mincount[input[x[k]1]1 + 1;
}
Yy /7/5
} 774
} 773
Y 772

} /71

R o K R RA R AR U ET G R

I08 6 9 6 88 8 & 8 o000 1 11111
4 769 968 8 8 8 0000111111
4 4 BB 8B 86888 o1 1111111
4 48 2228688 o0 11111111
4 4 82228688 o0 11111111
4 488888688 o1 1111111
99 9 9 6 6 6101010 oo022222211
9 9 9 3101010101010 02222212221
10010 10 10 10 10 10 10 10 10 33222 33333
U I I T TV T IV T }3 33333333

() (b

(a) Input image, and after processing detected minimas (shown in

bold) (b) Output image of labels after flooding the input image

Fif,%fg 3~ I%gfﬂﬂ E’yl?“i’r?ﬁﬂ%finqerBOOXSOO.raw%[’é;pfjﬁE‘}A];k‘{g_f AE U
void morphologicalThresholding(uc2D &iml, uc2D &iIm2)
void morphologicalContrastEnhance(uc2D &iml, uc2D &im2)

	單元十、灰階型態學影像處理
	型態學平滑化(Morphological smoothing)
	型態學梯度(Morphological gradient)
	型態學Laplacian

